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Abstract. We define and compute higher analogs of Pandharipande-Thomas sta-
ble pair invariants for K3 surfaces. Curve-counting on K3 surfaces is already well
developed; their reduced Gromov-Witten theory has been computed in primitive
classes by Maulik, Pandharipande, and Thomas. The partition functions are quasi-
modular forms, and there is a MNOP-style equivalence via a change of variable
with generating functions of Euler characteristics of moduli spaces of rank r = 0
stable pairs with n = 1 sections. The Euler characteristics of the stable pair mod-
uli spaces for higher rank r ≥ 0 and section rank n ≥ 1 are naturally interpreted
as a higher stable pair invariant. We fully compute the Hodge polynomials and
Euler characteristics of these moduli spaces, prove that the resulting partition func-
tions are modular forms, and explore the relationship of the higher invariants to
Gromov-Witten theory.

1. Introduction

1.1. Curve Counting Correspondences for Threefolds. There are to date three
methods of virtually counting pointed curves on a smooth algebraic threefold X (over
C), each by integrating against the virtual fundamental class of an appropriately
defined moduli space of curves M . Given a curve class β ∈ H2(X,Z):

• Gromov-Witten theory uses the moduli stack M = M g,n(X, β) [KM94] of n-
pointed genus g stable maps with image in the class β. The stack carries a
perfect obstruction theory [BF97], and the resulting virtual class has dimen-
sion

dim[M g,n(X, β)]vir =

∫
β

c1(X) + (3− dimX)(g − 1) + n =

∫
β

c1(X) + n (1)

• Donaldson-Thomas theory [Tho00] uses the Hilbert scheme M = Ik(X, β) of
subschemes Z ⊂ X with [Z] = β and χ(OZ) = k. The virtual dimension is

dim[Ik(X, β)]vir =

∫
β

c1(X)

• Pandharipande-Thomas theory [PT09b,PT09a,PT10] uses the moduli scheme
M = Pk(X, β) of stable pairs O → F in the sense of Le Potier [LP93,LP95],
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where F is a pure sheaf supported on a curve in the class β and χ(F ) = k.
The virtual dimension is also

dim[Pk(X, β)]vir =

∫
β

c1(X)

In each case, there are naturally defined cohomology classes on M , and the invari-
ants produced by integrating them against the virtual fundamental class provide a
virtual count of curves satisfying the associated incidence conditions. For example, in
Gromov-Witten theory there is a universal curve π : C →M g,n(X, β) and a universal
stable map µ : C → X. There are n sections σi : M g,n(X, β) → C corresponding to
the n marked points; the ith evaluation map is the composition

evi = µσi : M g,n(X, β)→ X

which on the level of C-points maps a stable curve f : C → X with ith marked point
pi ∈ C to f(pi). C is a flat curve over M g,n(X, β) with only nodal singularities, so
the relative dualizing sheaf ω = ωπ is a line bundle, and we define ψi = c1(σ

∗
i ω) and

λi = ci(π∗ω).
For X a Calabi-Yau variety (c1(X) = 0), the dimension of all three moduli spaces

is 0 for any g, k (and n = 0 in Gromov-Witten theory), and integrating the unit class
yields a number. For Gromov-Witten theory, we have

NGW
g,β =

∫
[Mg,n(X,β)]vir

1

and similarly we define NAB
k,β , for AB = DT,PT. These numbers are organized into

generating functions, though each with a slight subtlety. Pandharipande-Thomas
theory is the most straight-forward; the reduced partition function is simply

Z ′PT(X; q, v) =
∑

β∈H2(X,Z)
β 6=0

∑
k∈Z

NPT
k,β q

kvβ

Similarly, we form the Donaldson-Thomas partition function

ZDT(X; q, v) =
∑

β∈H2(X,Z)

∑
k∈Z

NDT
k,β q

kvβ

Moduli points in Donaldson-Thomas theory are 1-dimensional subschemes that must
have a component supported on a curve in the class β, but may include points off of
that curve. To correct for this, the reduced Donaldson-Thomas partition function is
obtained by dividing out the degree zero contribution,

Z ′DT(X; q, v) =
ZDT(X; q, v)

ZDT(X; q)0

where
ZDT(X; q)0 =

∑
n∈Z

NDT
k,0 q

k
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It has been computed; let

M(q) =
∏
k≥0

1

(1− qk)k

be the McMahon function, the generating function of 3-dimensional partitions. Then
we have

Theorem 1.1. [Li06, BF08, LP]. For X a threefold

ZDT(X; q)0 = M(−q)χ(X)

where χ(X) is the topological Euler characteristic.

The correspondence between the two sheaf-counting theories is easy:

Theorem 1.2.

Z ′DT(X; q, v) = Z ′PT(X; q, v)

Theorem (1.2) was treated in the toric case by [PT09a]; it was observed in [PT09b]
that the equality can be viewed as a wall-crossing formula for invariants of stability
conditions on Db(X). The general case of the theorem has been treated by many
authors, see [Tod,ST,Bri,KS,JS].

Finally, the reduced Gromov-Witten potential

F ′GW(X;u, v) =
∑

β∈H2(X,Z)
β 6=0

∑
g≥0

NGW
g,β u

2g−2vβ

generates Gromov-Witten invariants, all of which count irreducible curves. The re-
duced Gromov-Witten partition function

Z ′GW(X;u, v) = expF ′GW(X;u, v)

generates Gromov-Witten invariants with possibly disconnected domain curves, and
we then have

Theorem 1.3. [MOOP]. For X a toric Calabi-Yau threefold1

Z ′GW(X;u, v) = Z ′DT(X;−eiu, v)

Theorem (1.3) was originally conjectured in [MNOP06a, MNOP06b]. It has also
been proven for the generating functions of primary invariants for all toric threefolds
[MOOP].

1There are no proper toric Calabi-Yau threefolds, but GW and DT invariants can still be defined
by equivariant localization for local Calabi-Yau threefolds.
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1.2. The Gromov-Witten Theory of K3 Surfaces. It is natural to ask whether
there is an analogous relationship between Gromov-Witten theory and sheaf-theoretic
virtual curve counts on surfaces. In the threefold case, the relationship is most easily
described in the Calabi-Yau case, so it is natural to ask the question first for K3
surfaces. The Gromov-Witten theory of K3 surfaces has been studied by Maulik,
Pandharipande, and Thomas [MPT].

Let X be a K3 surface, β a curve class on X. The normal Gromov-Witten theory of
X vanishes because X can always be deformed so that β is no longer algebraic. This
triviality manifests itself as a trivial quotient of the obstruction bundle Obs. Indeed,
the obstruction space at a stable map f : C → X is H1(f ∗TX), but since ωX ∼= OX ,
the canonical map

H1(f ∗TX) ∼= H1(f ∗Ω1
X)→ H1(ωC) ∼= C

yields a trivial quotient Obs→ O. This forces the virtual class to be 0 since, naively,
[M g,n(X, β)]vir is Poincaré dual to the Euler class of the obstruction bundle.

After modifying the obstruction theory by taking instead the kernel of Obs → O
to be the obstruction bundle, we obtain a reduced virtual class [M g,n(X, β)]red with
virtual dimension one greater than expected:

dim[M g,n(X, β)]red = 1 +

∫
β

c1(TX) + (3− dimX)(g − 1) + n = g + n

The reduced Gromov-Witten invariants are

〈τk1(γ1) · · · τkn(γn)〉X,redg,β =

∫
[Mg,n(X,β)]vir

n∏
i=1

ψki
i ∪ ev∗i (γi) (2)

The Gromov-Witten potentials have surprising modularity properties:

Theorem 1.4. [MPT] Let X be an elliptic K3 surface with section, s the section
class and f the fiber class. Each Gromov-Witten potential

FX
g (τk1(γ1) · · · τkn(γn)) =

∑
h≥0

〈τk1(γ1) · · · τkn(γn)〉X,redg,s+hf q
h−1

is the Fourier expansion of a quasimodular form.

One can also define invariants involving the Hodge classes λi. Let

Rg,β =

∫
[Mg(X,β)]red

(−1)gλg

and define the partition function

ZGW
β (v) =

∑
g≥0

Rg,βv
2g−2 (3)

ZGW
β (v) only depends on the genus h of β by deformation invariance, and we will

also denote (3) by ZGW
h (v). Note we have replaced the usual variable u with v.
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1.3. Sheaf-Counting on K3 Surfaces. Let X be a K3 surface and D a divisor class
such that every divisor in D is reduced and irreducible of genus g. Following [KY00],
let P = |D| be the complete linear system of D and X × P ⊃ Cg → P the universal

divisor. The relative Hilbert scheme C[d]
g = Hilbd(Cg/P) parametrizing divisors C in

the class D and subschemes Z of C of length d is the surface analog of the moduli
space Pk(X, β) of stable pairs O → F with c1(F) = D and χ(F) = d + 1 − g = k.

C[d]
g is smooth, so a reasonable replacement for the Pandharipande-Thomas invariant

is the (signed) topological Euler characteristic of C[d]
g [PT10]. Let

ZPT
g (y) =

∑
d≥0

(−1)d+gχ(C[d]
g )yd+1−g

We then have a stable map-stable pair correspondence analogous to (1.2)

Theorem 1.5. [MPT]. ZGW
g (v) = ZPT

g (−eiv)

1.4. Outline. There is a natural generalization of the stable pair moduli spaces C[d]
g

of a K3 surface X; for a primitive divisor Dg on X with D2
g = 2g− 2, we consider the

moduli spaces Systn(r,Dg, k) of stable pairs On → E with χ(E) = k, where now we
allow more sections n ≥ 1 and higher rank rk(E) = r ≥ 0. In the r = 0, n = 1 case,
we clearly have

Syst1(0, Dg, k) ∼= C[k+g−1]
g

as constructed above. By a theorem of Kawai-Yoshioka [KY00], each Systn(r,Dg, k)
is smooth, and we can consider the signed Euler characteristic to be a higher rank
sheaf-counting invariant. These invariants are the analog of Sheshmani’s higher rank
stable pairs on threefolds [She], though in the threefold case only the r = 0 case has
been developed.

The aim of this paper is to compute the Hodge polynomials e (·) of these moduli
spaces and to explore the stable map-stable pair correspondence for K3 surfaces in
higher rank. Assembling these polynomials into generating functions

F r
n(q, y) =

∑
g≥0

∑
k∈Z

e (Systn(r,Dg, k + r)) (tt)−gykqg−1 (4)

the main result is Theorem (3.3):

Main Theorem 1.6. If s(q) =
∑
n≥0

e(X [n])(tt)−nqn−1 is the generating function of

the (symmetrized) Hodge polynomials of the Hilbert schemes X [n] of n points on X,
then

F r
n(q, y)

S(q)
=

(tt)r(n−r)

[n]

∑
p≥n−r
`≥r

(tt)−n`−(p−`)r[p+ `]

[
n+ `− r − 1

n− 1

][
p+ r − 1

n− 1

]
yp−`qp`
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The square binomial coefficients are u-binomial coefficients; see Section 4.1. The
same method allows one to compute a formula for the Hodge polynomials of the Brill-
Noether strata of all moduli spaces of sheaves with primitive first Chern class on a
K3 surface.

Setting n = 1, r = 0 we rederive the calculation of [KY00], and in particular the
potential ZPT

g (y):

Corollary 1.7. ∑
g≥0

ZPT
g (y)qg−1 = − F 0

1 (q,−y)
∣∣
t=t=1

This is equation (4) of [MPT].
The outline of the paper is as follows. In Section 2 we recall the moduli theory of

stable pairs on a K3 surface X. The key relationship between the relevant moduli
spaces is developed in Section 2.3. In Section 3 we compute the generating functions
(4) using the geometry from Section 2. In Section 3.4 we express the general invariants
in terms of the r = 0, n = 1 theory; in Section 3.5, we compute the generating
functions of the Euler characteristics and prove that the v-coefficients, after setting
y = −eiv, are modular forms. The less enlightening computations used in the course
of Section 3 are collected in Section 4.

The authors would like to thank D. Maulik and J. Tsimerman for helpful con-
versations. The first author would like to thank R. Pandharipande in particular for
introducing the authors to the subject matter and for many enlightening discussions
which greatly improved the content and exposition of the paper. Part of the research
reported here was completed while the authors were graduate students at Princeton
University.

2. The moduli theory of sheaves and stable pairs on K3 surfaces

Throughout this section, let X be an algebraic K3 surface over C. The Mukai
lattice of X is the total cohomology ring H∗(X,Z) together with the pairing

(v, w) = −
∫
X

v∨w =

∫
X

(v1w1 − v0w2 − v2w0)

where for v = v0 + v1 + v2 ∈ H∗(X,Z), vi ∈ H2i(X,Z) are the homogeneous compo-
nents, and similarly for w. We will denote by ω ∈ H4(X,Z) the Poincaré dual to the
point class. Using the canonical isomorphisms H0(X,Z) ∼= Z and H4(X,Z) ∼= Z, we
will write v = (r,D, a) for integers r, a when v0 = r, v1 = D, v2 = aω. Note that

Td(X) = 1 + 2ω
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Given a coherent sheaf E on X, the Mukai vector of E is

v(E) = ch E
√

Td(X)

= rk(E) + c1(E) +

(
rk(E)ω +

c1(E)2

2
− c2(E)

)
= (rk(E), c1(E), χ(E)− rk(E))

by Gronthendieck-Riemann-Roch. The Mukai pairing is defined so that, for any
coherent sheaves E ,F on X,

(v(E), v(F)) = −χ(RHom(E ,F))

Most of the following sections are adapted from the treatment in [KY00].

2.1. Moduli of Sheaves. Let H be an ample divisor on X, v = (r,D, a) ∈ H∗(X,Z)
a Mukai vector, and assume v1 = D is primitive. Throughout the following, by
(semi)stability we will mean Gieseker (semi)stability with respect to H. Let M(v) be
the moduli space of semistable sheaves E with v(E) = v. It is well known that (e.g.,
see [HL])

Theorem 2.1. For generic H, M(v) is a proper smooth irreducible symplectic variety
of dimension 2 + (v, v) = 2(g − ra) deformation equivalent to the Hilbert scheme of
g − ra points X [g−ra] on X.

We will be concerned with the case when D is of minimal degree:

Definition 2.2. A divisor class D ∈ Pic(X) has minimal degree if no positive line
bundle has smaller intersection product with H, that is

D.H = min{L.H|L ∈ Pic(X), L.H > 0}

Clearly every divisor of minimal degree is primitive. For any genus g, there is a
suitable K3 surface with a divisor class D of genus g and minimal degree:

Examples 2.3. (1) If X is an elliptic K3 surface with section, Pic(X) = Zσ⊕Zf ,
where f is the fiber class and σ the section class. Choosing H = σ + 3f to be
the ample class, we have

(aσ + bf).H = a+ b

σ and f are clearly of minimal degree, since both have intersection product 1
with H.

(2) If X has Picard rank one and H is the ample generator, then D = H has
minimal degree.

Lemma 2.4. If v1 = D is of minimal degree with respect to H, then H is generic in
the sense of (2.1).

Proof. This follows from the fact the semistability implies stability. Indeed, for
sheaves E with v(E) = (r,D, a), the minimal degree of D implies



8 BENJAMIN BAKKER AND ANDREI JORZA

(1) When r > 0, (semi)stability is equivalent to slope (semi)stability.
(2) When r = 0, stability is equivalent to purity.

in which case it’s obvious that semistability implies stability. �

2.2. A Stratification of the Moduli Spaces. In the setup of Section (2.1) suppose
further that M(v) is a fine moduli space, so there exists a universal sheaf F on
X ×M(v), flat over M(v), such that for every point p = [E ] ∈ M(v), the restriction
of F to X × p is E . For our purposes we need only consider the case when the Euler
characteristic χ = −(v(O), v) ≥ 0 (cf., (2.13)). Let π : X ×M(v) → M(v) be the
projection, and consider the subsets,

M(v)i = {[E ] ∈M(v)| dimH0(E) = i} (5)

with the induced reduced subscheme structure. By the semicontinuity theorem, we
have immediately

Lemma 2.5. If M(v) is a fine moduli space, then {M(v)i}i≥0 is a locally closed
stratification of M(v).

In general M(v) need not have a universal family, but étale locally it does. The
cohomology of coherent sheaves can be computed étale locally, and closed and open
immersions are both étale local properties, so

Proposition 2.6. {M(v)i}i≥0 is a (finite) locally closed stratification of M(v).

The finiteness follows from the coherence of π∗F étale-locally.

Remark 2.7. Since the second cohomology vanishes for any sheaf E with Mukai vector
v,

dimH0(E) ≥ χ(E) = χ = r + a

The generic stratum is in fact M(v)r+a, and each M(v)i for 0 ≤ i < r + a is empty.

2.3. Properties of Stable Pairs on K3 Surfaces. Throughout this section, (semi)stability
will mean Gieseker (semi)stability.

We briefly recall Le Potier’s notion of a coherent system [LP93], henceforth referred
to as a stable pair.

Definition 2.8. A stable pair (U, E) on X is a stable sheaf E and a subspace U ⊂
Hom(O, E). We will often denote a stable pair (U, E) by the corresponding evaluation
map U ⊗O → E. A morphism (U, E)→ (U ′, E ′) consists of morphisms U → U ′ and
E → E ′ such that

U ⊗O //

��

E

��
U ′ ⊗O // E ′

commutes. The Mukai vector of a stable pair (U, E) is the Mukai vector of E, and the
level of (U, E) is dimU .
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There is an obvious relative notion of stable pair. For a scheme S, let π : X×S → S
be the projection. A family of stable pairs (U , E) on X×S/S is a sheaf E on X×S flat
over S, a locally free sheaf U on S, and a morphism π∗U → E such that the restriction
to each fiber of π is a stable pair in the usual sense. A morphism of relative stable
pairs (U , E) and (U ′, E ′) is again given by morphisms U → U ′ and E → E ′ such that

f ∗U //

��

E

��
f ∗U ′ // E ′

commutes. By [LP93] the moduli functor of stable pairs with Mukai vector v and
level n is (coarsely) representable by a projective scheme Systn(v), and the obvious
forgetful morphism p : Systn(v)→M(v) is projective.

The following lemma of Yoshioka will control the geometry of Systn(v):

Lemma 2.9. Let D be a divisor on X of minimal degree, and E a stable sheaf on X
with c1(E) = D. Then

(1) Given a subspace U ⊂ Hom(O, E), let ϕ : U ⊗O → E be the evaluation map.
Either
(a) ϕ is injective,

0→ U ⊗O → E → F → 0

and the quotient F is stable.
(b) ϕ is not injective,

0→ F → U ⊗O → E → Q→ 0

and the kernel is stable and locally free, while the quotient Q is dimension
0.

(2) Given V ⊂ Ext1(E ,O), then in the corresponding extension

0→ V ∗ ⊗O → F → E → 0

F is stable.

Proof. See [Yos99, Lemma 2.1]. �

This has a number of geometric consequences. For example, we have

Theorem 2.10. [KY00, Lemma 5.117]. Let X be a K3 surface, v ∈ H∗(X,Z) a
Mukai vector. For v1 = D of minimal degree, Systn(v) is smooth.

Whenever −(v(O), v) ≥ 0, denote by Systn(v)i the preimage of the stratum M(v)i
from section (2.2) under the forgetful morphism p : Systn(v) → M(v); clearly
{Systn(v)}i≥0 is a locally closed stratification of Systn(v).
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For v = (r,D, a), denote Systn(r,D, a) = Systn(v) and M(r,D, a) = M(v). For
r ≥ n there is a map (cf. [KY00])

q : Systn(r,D, a)→M(r − n,D, a− n)

mapping (E , U) to the cokernel F of the evaluation map U⊗O → E , which is injective
by (2.9):

0→ U ⊗O → E → F → 0

Again by (2.9) F is stable, and v(F) = v(E) − v(On) = (r − n,D, a − n) since
v(O) = (1, 0, 1). Further, since H1(U⊗O) = 0, the stratum Systn(r,D, a)i maps into
M(r − n,D, a− n)i−n, assuming r + a− 2n ≥ 0.

Lemma 2.11. [KY00, Lemma 5.113]. For −(v(O), v) ≥ 0,

(1) The restriction Systn(v)i → M(v)i of the forgetful morphism p is an étale-
locally trivial fibration with fiber Gr(n, i).

(2) Furthermore, if r + a ≥ 2n, then the restriction Systn(r,D, a)i → M(r −
n,D, a − n)i−n of the quotient morphism q is an étale-locally trivial fibration
with fiber Gr(n, n+ i− r − a).

Proof. Both parts are obvious if M(v) has a universal sheaf F , in which case Systn(v)
is a relative Grassmannian of F . A universal sheaf exists étale locally, and the result
follows. See [KY00]. �

The main tool for the computation of the Hodge polynomials of Systn(r,D, a) will
be the existence of the resulting diagrams

Systn(r,D, a)i
q

))TTTTTTTTTTTTTTT
p

vvmmmmmmmmmmmm

M(r,D, a)i M(r − n,D, a− n)i−n

where p is an étale-local Gr(n, i)-fibration and q is an étale local Gr(n, n+ i− r− a)-
fibration.

One final property of the stable pair moduli spaces that will be relevant later is the
duality, first proven by [Mar01, Theorem 39]

Proposition 2.12. [KY00, Proposition 5.128]. In the setup of (2.10) there is an
isomorphism

Systn(r,D, a) ∼= Systn(n− r,D, a− r)
for all r ≤ n.

Remark 2.13. By this duality, if we’re interested in Systn(r,D, k+ r) for r ≤ n, we
may assume k ≥ 0, and thus we need only consider moduli spaces involving sheaves
of nonnegative Euler characteristic.
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Proof of Proposition (2.12). We will at the very least define the map; see [KY00] for
a proof of the theorem. Let U ⊗O → E be a stable pair, and consider U ⊗O → E as
a morphism of complexes supported in degree 0 in the derived category Db(X); let
x ∈ Db(X) be the cone. Thus, there is a triangle

x→ U ⊗O → E → x[1] (6)

Alternatively, we can think of x as the 2-term complex [U ⊗ O → E ] with E placed
in degree 1. Applying RHom( · ,O) to the triangle (6), we have a morphism

U∗ ⊗O ∼= Hom(U ⊗O,O)→ Hom(x,O) (7)

One can show that U∗ ⊗ O → Hom(x,O) is a stable pair and that this defines
the isomorphism. For example, (7) is injective on global sections because, applying
RHom( · ,O) to (6), there is an exact sequence

0 ∼= Hom(E ,O)→ U∗ → Hom(x,O)→ Ext1(E ,O)→ 0 (8)

where the triviality of Hom(E ,O) follows from the stability of E . �

Remark 2.14. In fact, by (8), we obtain an isomorphism

Systn(r,D, a)i ∼= Systn(n− r,D, a− r)i+n−χ
where χ = −(v(O), v), v = (r,D, a).

3. Computation of Hodge polynomials

This section will be devoted to computing the generating functions of the moduli
spaces of stable pairs on K3 surfaces. The geometric arguments are given here; some
useful computations are collected in the subsequent section.

3.1. Preparations. For X a scheme over C, let

e (X) =
∑
p,q≥0

hp,q(X)(−t)p(−t)q

denote the virtual Hodge polynomial of X. Throughout the following, we will set
u = tt; the Hodge polynomial of the Grassmannian Gr(k, n) of k planes in n-space is
easily expressed in terms of u-integers (see Section (4.1)):

e (Gr(k, n)) =

[
n

k

]
In particular,

e (Pn) = [n+ 1]

Let X now be a K3 surface. Recall that for a divisor class D ∈ H2(X,Z), D2 = 2g−2
by the adjunction formula, where g is the arithmetic genus of a divisor in the class D;
g will be called the genus of D. For each genus g ≥ 0 fix a polarized K3 surface Xg

with polarization Hg and a divisor class Dg of minimal degree and genus g, cf. (2.3):
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• g = 0, 1: Xg → P1 is an elliptic K3 with a section. Pic(Xg) = Zσ⊕Zf , where
f is the fiber class and σ the section class. For g = 0 take H0 = σ + 3f and
D0 = σ; for g = 1 take H1 = σ + 3f and D1 = f .
• g ≥ 2: Xg has Picard rank 1 with ample generator Hg of genus g; take
Dg = Hg.

Denote by M(r,Dg, k) the moduli space of Hg-stable rank r sheaves E on Xg with
c1(E) = Dg and ch2(E).[Xg] = k—in the notation of Section (2.1), this is M(v) for
v(E) = (r,Dg, k). Define infinite matrices M(g) = (M(g)ij)i,j≥0 and Systn(g) =
(Systn(g)ij)i,j≥0 of Hodge polynomials by

M(g)ij =

{
e
(
M
(
i−j
2
, Dg,

i+j
2

))
, i− j ≡ 0 mod 2

0, i− j ≡ 1 mod 2

Systn(g)ij =

{
e
(
Systn

(
i−j
2
, Dg,

i+j
2

))
, i− j ≡ 0 mod 2

0, i− j ≡ 1 mod 2

Note that these matrices only encode moduli of pairs U ⊗ O → E for which E has
nonnegative Euler characteristics, but by (2.13) this will be sufficient. Recall from
Section 4.3 that in this case M(r,D, a)i is the stratum of M(r,D, a) of sheaves E
with h0(E) = i. By (2.7) the highest dimensional stratum is i = r + a = χ(E); define
a matrix M0(g) = (M0(g)ij)i,j≥0 of the virtual Hodge polynomials of these generic
strata:

M0(g)ij =

{
e
(
M
(
i−j
2
, Dg,

i+j
2

)
i

)
, i− j ≡ 0 mod 2

0, i− j ≡ 1 mod 2

3.2. Encoding the Geometry. In the following arguments, we will at any one time
be considering X = Xg for a fixed g, so we drop the g subscripts from the notation.

For any locally closed stratification of a scheme Y , the virtual Hodge polynomial
of Y is the sum of the virtual Hodge polynomials of the strata. In particular,

e (M(r,D, a)) =
∞∑
i=0

e (M(r,D, a)i) (9)

Of course the terms are zero for i < min(0, r + a). Similarly

e (Systn(r,D, a)) =
∞∑
i=0

e (Systn(r,D, a)i)

Recall from Section 4.5 that there is a diagram for r ≥ n, r + a ≥ 2n,

Systn(r,D, a)i
q

))TTTTTTTTTTTTTTT
p

vvmmmmmmmmmmmm

M(r,D, a)i M(r − n,D, a− n)i−n
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which can be rewritten as

Systn(r + n,D, a+ n)i+n
q

))TTTTTTTTTTTTTTT
p

tthhhhhhhhhhhhhhhhhh

M(r + n,D, a+ n)i+n M(r,D, a)i

for i, r, n ≥ 0. Recall that the fiber of p above M(r+n,D, a+n)i+n is Gr(n, i+n) and
the fiber of q over M(r,D, a)i is Gr(n, i−r−a); we have i ≥ r+a since h0(E) ≥ χ(E)
for any stable E as h2(E) = 0. Taking n = i− r − a,

Systi−r−a(i− a,D, i− r)2i−r−a

∼=

q

**UUUUUUUUUUUUUUUU
p

ssgggggggggggggggggggg

M(i− a,D, i− r)2i−r−a M(r,D, a)i

where q is an isomorphism and p is an étale-locally fibration with fiber Gr(i − r −
a, 2i− r − a).

For any Zariski-locally trivial fibration Y → S with fiber F—i.e., Zariski-locally
trivially on S, Y → S is isomorphic to the projection F × S → S—the Hodge
polynomials simply multiply

e (Y ) = e (F ) e (S)

The same is not in general true for étale-locally trivial fibrations, but it is in this case:

Lemma 3.1. Let Y, S be quasiprojective varieties over C, and π : X → Y a projective
étale-locally trivial fibration with fiber Gr(k, n). Then

e (Y ) = e (Gr(k, n)) e (S)

Proof. Let Ω = ΩY/S be the relative cotangent bundle, and let A ⊂ H∗c (Y,Q) be
the sub-Hodge structure generated by the Chern classes ci(ΩY/S) and their prod-

ucts. For each fiber i : Gr(k, n) → Y , i∗ clearly restricts to an isomorphism A
∼=−→

H∗(Gr(k, n),Q) of Hodge structures. Let ϕ : H∗(Gr(k, n),Q) → A be the inverse,
and define a morphism of Hodge structures

ψ = ϕ ` π∗ : H∗(Gr(k, n),Q)⊗H∗c (S,Q)→ H∗c (Y,Q)

By the Leray-Hirsch theorem, this is an isomorphism of vector spaces, and therefore
of Hodge structures. �

Thus,

e (M(r,D, a)i) = e (Gr(i− r − a, 2i− r − a)) e (M(i− a,D, i− r)2i−r−a)

=

[
2i− r − a
i− r − a

]
e (M(i− a,D, i− r)2i−r−a) (10)
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After replacing ` = r, a = k + `, and i = k + 2`+ s, this becomes

e (M(`,D, k + `)k+2`+s) =

[
k + 2`+ 2s

s

]
e (M(`+ s,D, k + `+ s)k+2`+2s) (11)

The Hodge polynomial on the right is M0(g)k+2`+2s,k. The strata M(`,D, k+`)k+2`+s

are null for s < 0, so

M(g)k+2`,k = e (M(`,D, k + `))

=
∞∑
s=0

[
k + 2`+ 2s

s

]
M0(g)k+2`+2s,k

=
∞∑
s=0

A0
k+2`,k+2`+2sM

0(g)k+2`+2s,k

where A(0) = (A0
ij)i,j≥0 is the matrix from Section 4.4. Thus

M(g) = A(0)M0(g)

Moreover, since

e (Systn(r,D, a)i) = e (Gr(n, i)) e (M(r,D, a)i)

We have

e (Systn(`,D, k + `)k+2`+s) =

[
k + 2`+ s

n

]
e (M(`,D, k + `)k+2`+s)

so that

Systn(g)k+2`,k = e (Systn(`,D, k + `))

=
∞∑
s=0

[
k + 2`+ s

n

][
k + 2`+ 2s

s

]
M0(g)k+2`+2s,k

=
∞∑
s=0

Ank+2`,k+2`+2sM
0(g)k+2`+2s,k

where A(n) = (Anij)i,j≥0 is the more general A-matrix from Section 4.4. Thus,

Systn(g) = A(n)M0(g)

and setting P(n) = A(n)A(0)−1,

Proposition 3.2.

Systn(g) = P(n)M(g)

The entries of P(n) are computed in (4.5)
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3.3. Explicit Computations. By (2.1), M(r,D, a) is deformation equivalent to the
Hilbert scheme of points X [g−ra], so

e (M(r,D, a)) = e
(
X [g−ra])

The generating function for the Hodge polynomials of the X [n] is, by Göttsche’s
formula [Göt90],

∑
n≥0

e
(
X [n]

)
qn =

∏
n≥1

2∏
i,j=0

(1− (−1)i+jti−1t
j−1

(uq)n)−(−1)i+jhi,j(X)

=
∏
n≥1

1

(1− u−1(uq)n)(1− tt−1
(uq)n)(1− (uq)n)20(1− tt−1(uq)n)(1− u(uq)n)

More concisely,∑
n≥0

e
(
X [n]

)
u−nqn =

=
∏
n≥1

1

(1− u−1qn)(1− t2u−1qn)(1− qn)20(1− t−2uqn)(1− uqn)
(12)

Denote by c(n) = e
(
X [n]

)
. We are interested in the generating function (we sup-

press the u-dependence from the notation)

F r
n(q, y) :=

∑
g≥0

∑
k∈Z

e (Systn(r,Dg, k + r))u−gykqg−1

=
∑
g≥0

∑
k≥0

e (Systn(r,Dg, k + r))u−gykqg−1

+
∑
g≥0

∑
k<0

e (Systn(r,Dg, k + r))u−gykqg−1 (13)

The exponent g − 1 of q (instead of simply g) is customary. For r ≤ n, we know by
(2.12) that

Systn(r,D, r − k) ∼= Systn(n− r,D, n− r + k)

and therefore we can write (13) as

F r
n(q, y) =

∑
g≥0

∑
k≥0

Systn(g)k+2r,ku
−gykqg−1 +

∑
g≥0

∑
k>0

Systn(g)k+2(n−r),ku
−gy−kqg−1
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We have

Systn(g)k+2r,k =
∑
`≥r

P n
k+2r,k+2`M(g)k+2`,k

=
∑
`≥r

P n
k+2r,k+2`c

(
g − `2 − `k

)
Systn(g)k+2(n−r),k =

∑
`≥r+n

P n
k−2r+2n,k+2`M(g)k+2`,k

=
∑
`≥r+n

P n
k−2r+2n,k+2`c

(
g − `2 − `k

)
Therefore

F r
n(q, y) =

∑
g≥0

∑
k∈Z

u−gqg−1yk Systn(g)k+2r,k

=
∑
g≥0

∑
k≥0

u−gqg−1yk
∑
`≥r

P n
k+2r,k+2`c(g − `2 − `k)

+
∑
g≥0

∑
k≥1

u−gqg−1y−k
∑
`≥n−r

P n
k−2r+2n,k+2`c(g − `2 − `k)

and thus

F r
n(q, y) = S(q)

∑
k≥0

∑
`≥r

yku−`
2−`kq`k+`

2

P n
k+2r,k+2` (14)

+ S(q)
∑
k≥1

∑
`≥n−r

y−ku−`
2−`kq`k+`

2

P n
k−2r+2n,k+2` (15)

where

S(q) =
∑
g≥0

c(g)u−gqg−1

is the generating function of the Hodge polynomials of the Hilbert schemes of points
on a K3 surface (again with the customary shift in the q power). We also know by
(4.7) that

P n
k+2r,k+2` = ur(n−r)u`

2+`k−n`−kr [k + 2`]

[n]

[
n+ `− r − 1

n− 1

][
k + `+ r − 1

n− 1

]
P n
k−2r+2n,k+2` = ur(n−r)u`

2+`k−n`−k(n−r) [k + 2`]

[n]

[
`+ r − 1

n− 1

][
k + `− r + n− 1

n− 1

]
Note that the sums in (14), (15) make sense for all ` ≥ 0 since the terms are zero
whenever ` < r in the first and ` < n− r in the second sum.
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Write p = `+ k to get∑
k≥0

∑
`≥0

yku−`
2−`kq`k+`

2

P n
k+2r,k+2`

=
ur(n−r)

[n]

∑
`≥0

∑
p≥`

u−n`−(p−`)r[p+ `]

[
n+ `− r − 1

n− 1

][
p+ r − 1

n− 1

]
yp−`qp`

and∑
k>0

∑
`≥0

y−ku−`
2−`kq`k+`

2

P n
k−2r+2n,k+2`

=
ur(n−r)

[n]

∑
p>`

∑
`≥0

u−np+(p−`)r[p+ `]

[
`+ r − 1

n− 1

][
n− r + p− 1

n− 1

]
y`−pqp`

`↔p
=

ur(n−r)

[n]

∑
p≥0

∑
`>p

u−n`−(p−`)r[p+ `]

[
n+ `− r − 1

n− 1

][
p+ r − 1

n− 1

]
yp−`qp`

Where the second line is obtained by setting k = p− `, and the third by switching p
and `. Noting that

[
n+`−r−1
n−1

]
and

[
p+r−1
n−1

]
vanish for ` < r and p < n− r, respectively,

the result is

Theorem 3.3. For r ≤ n,

F r
n(q, y)

S(q)
=

ur(n−r)

[n]

∑
p≥n−r
`≥r

u−n`−(p−`)r[p+ `]

[
n+ `− r − 1

n− 1

][
p+ r − 1

n− 1

]
yp−`qp`

Remark 3.4. One is able to produce a similar formula for r > n by once again using
the duality (2.12), but it requires defining M(r,D, a) for negative r. Such moduli
spaces naturally parametrize objects in the derived category Db(X) Verdier dual to
stable sheaves; this will be further pursued in a subsequent paper by the authors.

Remark 3.5. The same method may be employed to compute the Hodge polynomials
of the Brill-Noether strata M(r,Dg, r + k)i of each moduli space. For example, the
generating function

M r
gen(q, y) =

∑
g≥0

∑
k≥0

e
(
M0(r,Dg, k + r)

)
u−gykqk−1

(note that k ≥ 0) can be computed by repeating the same calculation above, but with
the P(n) matrix replaced with B = A(0)−1 in (14) (see Section (4.4)). Similarly,
(11) can be used to obtain the generating function of the Hodge polynomials of the
Brill-Nother strata of a fixed codimension.
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Note that the only dependence on t, t that doesn’t factor through u = tt is from
the term S(q). In particular for r = 0, n = 1

F 0
1 (q, y)

S(q)
=
∑
`≥0

∑
p≥1

u−`[p+ `]yp−`qp`

=
1

u− 1

∑
`≥0

∑
p≥1

(up − u−`)yp−`qp`

=
1

u− 1
Ψ(u, y; q)

where Ψ(u, y; q) is the function from Section 4.3. By the computations in Section
(4.3), we recover

Corollary 3.6. [KY00, Theorem 5.158].

F 0
1 (q, y)

S(q)
=

−1

(1− y)(1− u−1y−1)

∏
n≥1

(1− qn)2(1− uqn)(1− u−1qn)

(1− yqn)(1− y−1qn)(1− uyqn)(1− u−1y−1qn)

For future reference, set

Φ(u, y; q) =
∏
n≥1

(1− qn)2(1− uqn)(1− u−1qn)

(1− yqn)(1− y−1qn)(1− uyqn)(1− u−1y−1qn)

Note directly from the formula in (3.3) that the duality (2.12) manifests itself in a
kind of rank-level duality for the generating function F r

n(q, y):

Corollary 3.7.

F r
n(q, y) = F n−r

n (q, y−1)

3.4. Relation to r = 0, n = 1. The form of the higher generating functions is
strongly determined by the Kawai-Yoshioka (r = 0, n = 1) function. Define Laurent
polynomials Cr

n(i, j) in u for r ≥ 0, n ≥ 1, 1 ≤ i ≤ n and 0 ≤ j ≤ n−i by Cr
n(n, 0) = 1

and

Cr
n+1(i, j) = Cr

n(i− 1, j) + Cr
n(i+ 1, j − 1)− ur−nCr

n(i, j − 1)− un−rCr
n(i, j)

Lemma 3.8. The term u−n`−(p−`)r[p+ `]

[
n+ `− r − 1

n− 1

][
p+ r − 1

n− 1

]
is equal to

(u− 1)1−2n

[n− 1]!2

n∑
i=1

n−i∑
j=0

Cr
n(i, j)(uip − u−i`)uj(p−`)
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Proof. Clearly the claim is true for n = 1. Note that

u−`[n+ `− r][p+ r − n]

[n]2
=

(u− 1)2

[n]2
(un−r − u−`)(up+r−n−` − u`)

=
(u− 1)2

[n]2
(up − up+r−n−` − un−r + u−`)

Thus by induction

u−(n+1)`−(p−`)r[p+ `]

[
n+ `− r − 1

n

][
p+ r − 1

n

]
(16)

=
u−`[n+ `− r][p+ r − n]

[n]2

(
u−n`−(p−`)r[p+ `]

[
n+ `− r − 1

n− 1

][
p+ r − 1

n− 1

])
=

(u− 1)2

[n]2
(up − up+r−n−` − un−r + u−`)

(
(u− 1)2−2n

[n− 1]!2

∑
i,j

Cr
n(i, j)(uip − u−i`)uj(p−`)

)
The two fractions match up to give the coefficient we want in front of the sum. Note
that

(up + u−`)(uip − u−i`)uj(p−`) = (u(i+1)p − up−i`)uj(p−`) + (uip−` − u−(i+1)`)uj(p−`)

= (u(i+1)p − u−(i+1)`)uj(p−`) + (u(i−1)p − u−(i−1)`)u(j+1)(p−`)

and

−(up+r−n−`+un−r)(uip−u−i`)uj(p−`) = −ur−n(uip−u−i`)u(j+1)(p−`)−un−r(uip−u−i`)uj(p−`)

So that in (16) the coefficient of (uip − u−i`)up−` is

Cr
n(i− 1, j) + Cr

n(i+ 1, j − 1)− ur−nCr
n(i, j − 1)− un−rCr

n(i, j)

which by definition is Cr
n+1(i, j).

�

By (3.3),

[n]ur(r−n)S(q)−1F r
n(q, y) =

∑
`≥0

∑
p≥0

u−n`−(p−`)r[p+ `]

[
n+ `− r − 1

n− 1

][
p+ r − 1

n− 1

]
yp−`qp`

=
(u− 1)1−2n

[n− 1]!2

n∑
i=1

n−i∑
j=0

Cr
n(i, j)

∑
p,`≥0

(uip − u−i`)uj(p−`)yp−`qp`

=
(u− 1)1−2n

[n− 1]!2

n∑
i=1

n−i∑
j=0

Cr
n(i, j)Ψ(ui, ujy; q)
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So finally

Theorem 3.9.

F r
n(q, y)

S(q)
=
ur(n−r)(u− 1)1−2n

[n][n− 1]!2

n∑
i=1

n−i∑
j=0

Cr
n(i, j)Ψ(ui, ujy; q)

For example, for n = 2 the only nonzero Cr
2(i, j) are

Cr
2(2, 0) = 1 Cr

2(1, 0) = −u1−r Cr
2(1, 1) = −ur−1

and therefore

ur(r−2)(u− 1)3[2]S(q)−1F r
2 (q, y) = Ψ(u2, y)− u1−rΨ(u, y)− ur−1Ψ(u, uy) (17)

3.5. Euler Characteristics and Modularity. Of particular interest is the gener-
ating function f rn(q, y) := F r

n(q, y)|t=t=1 of the Euler characteristics χ (Systn(r,D, a))
of the stable pair moduli spaces. By definition,

f rn(q, y) =
∑
g≥0

∑
k∈Z

χ (Systn(r,Dg, k + r)) ykqg−1

The generating function s(q) of the Euler characteristics of the Hilbert scheme of
points is well known. From (12),

s(q) = S(q)|t=t=1 =
∑
g≥0

χ(X [g])qg−1 = q−1
∏
g≥1

1

(1− qg)24
=

1

η(q)24

where η(q) is the q-expansion of the Dedekind η function. Define

Gr
n(q, y) =

F r
n(q, y)

S(q)

and

grn(q, y) =
f rn(q, y)

s(q)

From (3.3),

Theorem 3.10.

grn(q, y) =
1

n

∑
p≥n−r
`≥r

(p+ `)

(
n+ `− r − 1

n− 1

)(
p+ r − 1

n− 1

)
yp−`qp`

Note that the coefficient in (3.6) can be rewritten at u = 1 as

−1

(1− y)(1− y−1)
=

(
√
y − 1
√
y

)−2

Thus, for r = 0, n = 1 we recover the Kawai-Yoshioka formula [KY00]
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Corollary 3.11.

g0
1(q, y) =

(
√
y − 1
√
y

)−2∏
n≥1

(1− qn)4

(1− yqn)2(1− y−1qn)2

From [MPT] we know the v coefficients of g0
1(q, y) after the change of variable

y = −eiv are (the q-expansions of) classical modular forms,

−g0
1(q,−y)

y=−eiv

=
1

v2
· exp

(∑
g≥1

u2g |B2g|
g · (2g)!

E2g(q)

)
where E2g(q) is the q-expansion of the 2gth Eisenstein series and B2g is the 2gth
Bernoulli number, defined by t

et−1
=
∑∞

n=0Bn
tn

n!
. See [Fol09], for example, for an

elementary treatment of modular forms. Note that

iv

eiv − 1
=
∑
m≥0

Bm(iv)m

m!

−iv
e−iv − 1

=
∑
m≥0

Bm(−iv)m

m!

thus

lim
u→1

v2

(1− uk+leiv)(1− u−le−iv)
=
∑
m,n≥0

Bm
(iv)m

m!
Bn

(−iv)n

n!

=
∑
n≥0

invn

n!

n∑
k=0

(−1)kBkBn−k

(
n

k

)
is a power series in Q[[v]], which we denote by B.

The divisor functions
σg(n) =

∑
d|n

dg

are related to the Eisenstein series by

E2g(q) = 1− 4g

B2g

∑
n≥1

σ2g−1q
n

E2g(q) is a modular form of weight 2g and level Γ(1). The Eisenstein series E2g+1(q)
of odd weight 2g + 1 and level Γ(2) are defined by

E2g+1(q) = 1 +
4(−1)g

e2g

∑
n≥1

σ2g−1q
n/2

where the numbers en are defined by 1
cos t

=
∑

n≥0 en
tn

n!
Let

R = Q(i)[E2g(q), E2g+1(q
2)|g ≥ 1]
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be an algebra generated by modular forms on Γ(4). Clearly the generating functions
Σg =

∑
n≥1 σg(n)qn ∈ R for g ≥ 1. The modularity result for grn(q, y) is:

Theorem 3.12. The coefficient of vs in the power series expansion of v2grn(q, eiv) is
itself a power series in q, and this coefficient is in fact in the algebra R.

First we have

Lemma 3.13. Let log Φ(uk, u`eiv; q) =
∑
s≥0

ψk,`,sv
s where ψk,`,s is a function of u and

q. Then for all t ≥ 0, the t-th derivatives dt

dutψk,`,s|u=1 ∈ R.

Proof. By definition

Φ(uk, u`eiv, q) =
∏
n≥1

(1− qn)2(1− ukqn)(1− u−kqn)

(1− uk+`eivqn)(1− u−k−`e−ivqn)(1− u`eivqn)(1− u−`e−ivqn)

and so

log Φ(uk, u`eiv; q) =
∑
n≥1

(
2 log(1− qn) + log(1− ukqn) + log(1− u−kqn)

− log(1− uk+`eivqn) + log(1− u−k−`e−ivqn)

+ log(1− u`eivqn) + log(1− u−`e−ivqn)
)

=
∑
n≥1

∑
r≥1

qnr

r

(
2 + ukr + u−kr

)
−

∑
n≥1

∑
r≥1

∑
s≥0

qnr(ivr)s

rs!

(
u(k+`)r + (−1)su−(k+`)r + u`r + (−1)su−`r

)
=
∑
n≥1

qn
∑
r|n

(
2 + ukr + u−kr

)
r

−

∑
s≥0

isvs

s!

∑
n≥1

qn
∑
r|n

rs−1
(
u(k+`)r + (−1)su−(k+`)r + u`r + (−1)su−`r

)
This implies that

ψk,`,0 =
∑
n≥1

qn
∑
r|n

(
2 + ukr + u−kr − u(k+`)r − u−(k+`)r − u`r − u−`r

)
r

and for s ≥ 1

ψk,`,s = − i
s

s!

∑
n≥1

qn
∑
r|n

rs−1
(
u(k+`)r + (−1)su−(k+`)r + u`r + (−1)su−`r

)
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Evaluating at u = 1 we get ψk,`,0|u=1 = 0 and ψk,`,s|u=1 = −2(1 + (−1)2)is

s!
Σs−1.

Differentiating, we get that for t ≥ 1 and s ≥ 1 we have(
dt

dut
ψk,`,0

)∣∣∣∣
u=1

= t!
∑
n≥1

qn
∑
r|n

rs−1

((
kr

t

)
+

(
−kr
t

)
−
(

(k + `)r

t

)

−
(
−(k + `)r

t

)
−
(
`r

t

)
−
(
−`r
t

))
and (

dt

dut
ψk,`,s

)∣∣∣∣
u=1

= −i
st!

s!

∑
n≥1

qn
∑
r|n

rs−1

((
(k + `)r

t

)
+ (−1)s

(
−(k + `)r

t

)

= +

(
`r

t

)
+ (−1)s

(
−`r
t

))
The conclusion then follows as each coefficient of qn in the above expansions is either
0 or a Q-linear combination of powers of r which implies that the derivative evaluated
at u = 1 is a linear combination of terms of the form Σw for w ≥ 1. �

Proof of Theorem 3.12. Note that

v2grn(q, eiv) = lim
u→1

v2Gr
n(q, eiv)

= lim
u→1

ur(n−r)(u− 1)1−2n

[n][n− 1]!2

n∑
k=1

n−k∑
`=0

Cr
n(i, j)Ψ(uk, u`y; q)

= B lim
u→1

ur(n−r)(u− 1)1−2n

[n][n− 1]!2

n∑
k=1

n−k∑
`=0

Cr
n(i, j)Φ(uk, u`y; q)

To compute the limit we apply L’Hôpital observing that

d2n−1

du2n−1

[n][n− 1]!2

(u− 1)2n−1

∣∣∣∣
u=1

= n2

We get

v2grn(q, eiv) =
B
n2

dn
2

dun2

(
n∑
k=1

n−k∑
`=0

Cr
n(k, `)Φ(uk, u`eiv; q)

)∣∣∣∣∣
u=1

so it is enough to check that for all t ≥ 0, dt

dut Φ(uk, u`eiv; q)|u=1 ∈ R[[v]].
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But
dt

dut
Φ(uk, u`eiv; q) =

dt

dut
exp

(∑
s≥0

ψk,`,sv
s

)
is of the form

exp

(∑
s≥0

ψk,`,sv
s

)
Fk,`,t = Φ(uk, u`eiv; q)Fk,`,t

where Fk,`,t is an expression involving only the ψk,`,s and their derivatives. Evaluating
at u = 1, the previous lemma shows that all coefficients of powers of v in Fk,`,t are in
R. Finally, note that

Φ(1, eiv; q) =
∏
n≥1

(1− qn)4

(1− eivqn)2(1− e−ivqn)2

and this was computed in [MPT, p. 53] to be 4
∑
k≥1

(−1)kv2k

(2k)!
Σ2k−1. Multiplying

everything together we get the required conclusion. �

4. Computations

4.1. u-Binomial Coefficients. The u-integer [n] is the polynomial in u given by

[n] =
un − 1

u− 1

The u-factorial and u-binomial coefficients are defined similarly:

[n]! =
n∏
s=1

[s]

[
n

k

]
=

{
[n]!

[k]![n−k]! k ≤ n

0 k > n

By fiat [0]! = 1.

4.2. Properties of u-Binomial Coefficients. Most binomial identities have u-
analogs, many of which recover the classical identities in the u→ 1 limit. We collect
here the properties we will need with proofs.

Lemma 4.1. For any k ≤ n

(1)

[n] = [n− k] + un−k[k]

(2) [
n+ 1

k

]
=

[
n

k

]
+ un+1−k

[
n

k − 1

]
(18)

Proof. (1) Follows immediately from [n+ 1] =
∑n

s=0 u
s.
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(2) [
n+ 1

k

]
=

[n+ 1]!

[k]![n+ 1− k]!

=
[n]!

[k]![n− k]!

(
[n+ 1]

[n+ 1− k]

)
=

[n]!

[k]![n− k]!

(
1 + un+1−k [k]

[n+ 1− k]

)
=

[
n

k

]
+ un+1−k

[
n

k − 1

]
�

Note that
[
n
k

]
has degree k(n− k). The symmetric u-binomial coefficient is defined

for 0 ≤ k ≤ n by {
n

k

}
= u−

k(n−k)
2

[
n

k

]
Also, under the same conditions let{

−n
k

}
= (−1)k

{
n+ k − 1

k

}
Let

Kn(t, u) =
n−1∏
s=0

(1 + tus−
n−1

2 )

for n ≥ 0.

Lemma 4.2.

Kn(t−1, u) = t−nKn(t, u)

Proof.

Kn(t−1, u) = t−n
n−1∏
s=0

(t+ us−
n−1

2 )

but terms in the product come in pairs (t+ us)(t+ u−s) = (1 + tus)(1 + tu−s). �

Kn is invertible as a Laurent series in t, u
1
2 ; let

K−n(t, u) = Kn(t, u)−1

There is an analog of Lemma (4.1) for symmetric u-binomial coefficients:

Lemma 4.3. For any 0 ≤ k ≤ n
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(1) {
n+ 1

k

}
= u−

k
2

{
n

k

}
+ u

n+1−k
2

{
n

k − 1

}
(19)

(2) Kn(t, u) is the generating function for the

{
n

k

}
, that is

Kn(t, u) =
∞∑
k=0

tk
{
n

k

}
(3) {

n+ k

k

}
=

k∑
s=0

u
sn+s−k

2

{
n+ k − s− 1

k − s

}
(4) K−n(t, u) is the generating function for the

{
−n
k

}
, that is

K−n(t, u) =
∞∑
k=0

tk
{
−n
k

}
Proof. (1) Multiplying (18) by u

k(n+1−k)
2 gives (19).

(2) Note that

Kn+1(t, u) =
(
1 + tu

n
2

)
Kn(tu−

1
2 , u) (20)

Assuming by induction that the coefficient of ts in Kn(tu−
1
2 , u) is u−

s
2

{
n

s

}
,

the coefficient of tk in Kn+1(t, u) is

u−
k
2

{
n

k

}
+ u

n−k+1
2

{
n

k − 1

}
which yields the result given part (1).

(3) Replacing n in (19) with n+ k − 1 we have{
n+ k

k

}
= u−

k
2

{
n+ k − 1

k

}
+ u

n
2

{
n+ k − 1

k − 1

}
(21)

Note that
k∑
s=0

u
sn+s−k

2

{
n+ k − s− 1

k − s

}
= u−

k
2

{
n+ k − 1

k

}
+

k∑
s=1

u
sn+s−k

2

{
n+ k − s− 1

k − s

}

= u−
k
2

{
n+ k − 1

k

}
+ u

n
2

(
k−1∑
s=0

u
sn+s−k+1

2

{
n+ k − s− 2

k − s− 1

})
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By induction the term in parentheses is

{
n+ k − 1

k − 1

}
, and by (21) the result

follows.
(4) Inverting (20), we have

K−n−1(t, u) =
1

1 + tu
n
2

K−n(tu−
1
2 , u) = K−n(tu−

1
2 , u)

∞∑
s=0

(−1)stsu
ns
2

Inductively assuming the coefficient of tk−s in K−n(tu−
1
2 , u) is

u−
k−s
2

{
−n
s

}
= (−1)k−su−

k−s
2

{
n+ k − s− 1

k − s

}
the coefficient of tk in K−n−1(t, u) is

(−1)k
k∑
s=0

u
ns+s−k

2

{
n+ k − s− 1

k − s

}
= (−1)k

{
n+ k

k

}
=

{
−n− 1

k

}
by part (3).

�

4.3. q-Theta Functions. Given expressions a, b polynomial in q (we will be more
precise below), the Pochhammer symbol (a, b)∞ is a formal power series in q defined
by

(a, b)∞ =
∞∏
n=0

(1− abn)

For example, (q, q)∞ =
∏

n≥1(1 − qn). The q-theta function Θ(x; q) ∈ Q[x, x−1][[q]]
is a formal power series in q whose coefficients are Laurent polynomials in x. It is
defined by

Θ(x; q) = (q, q)∞(x, q)∞(x−1q, q)∞ = (1− x)
∞∏
n=1

(1− qn)(1− xqn)(1− x−1qn)

In particular Θ(x; q) has a simple root at x = 1. Our main use for Θ(x; q) is derived
from an identity involving

Φ(a, b; q) :=
(q, q)3

∞Θ(ab; q)

Θ(a; q)Θ(b; q)

Note Φ(a, b; q) is not an element of Q[a, b][[q]], but it converges for |q| < |a|, |b| < 1.
We have

Lemma 4.4. For n ∈ Z, define

sign(n) =

{
+1 n ≥ 0

−1 n < 0
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Then
Φ(a, b; q) =

∑
sign(i)=sign(j)

sign(i)aibjqij

for |q| < |a|, |b| < 1.

Proof. See [Hic88, Theorem 1.5]. �

Define
Ψ(x, y; q) =

∑
`≥0

∑
p≥1

(xp − x−`)yp−`qp`

The actual statement we needed in (3.3) is

Lemma 4.5. As formal power series

Ψ(x, y; q) = Φ(xy, y−1; q)

Proof. By [Hic88, Theorem 1.4],∑
p∈Z

ap

1− qpb
= Φ(a, b; q)

for 0 < |q| < |a| < 1 and b 6= qp for any p ∈ Z. On the region

R = {(q, x, y) ∈ C3|0 < |q| < |x| < |y−1| < 1}
we have, for p > 0, |qpy| < 1, and for p ≥ 0, |qpy−1| < 1. Thus, each line in the
following converges in R:

Φ(xy, y−1; q) =
∑
p>0

(xy)p

1− qpy−1
+

1

1− y−1
+
∑
p<0

(xy)p

1− qpy−1

=
∑
p>0

(xy)p

1− qpy−1
+

1

1− y−1
+
∑
p>0

(xy)−p

1− q−py−1

=
∑
p>0

(xy)p

1− qpy−1
− y

1− y
−
∑
p>0

(qpy)(xy)−p

1− qpy

=
∑
p>0

∑
`≥0

(xy)pqp`y−` −
∑
p>0

∑
`≥0

(qpy)(xy)−pqp`y` − y

1− y
(∗)
=
∑
p>0

∑
`≥0

(xy)pqp`y−` −
∑
`>0

∑
p>0

(xy)−`qp`yp − y

1− y

=
∑
p>0

∑
`>0

(xy)pqp`y−` −
∑
`>0

∑
p>0

(xy)−`qp`yp +
xy

1− xy
− y

1− y

=
∑
p,`>0

(xp − x−`)yp−`qp` +
xy

1− xy
− y

1− y
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In the equality labeled (*) we replaced `+ 1 7→ p and p 7→ `. Thus, on R we have∑
p,`>0

(xp − x−`)yp−`qp` +
xy

1− xy
− y

1− y
=

(q, q)∞Θ(x; q)

Θ(xy; q)Θ(y−1; q)

=
(1− x)

(1− xy)(1− y−1)

∏
n≥1

(1− qn)2(1− xqn)(1− x−1qn)

(1− xyqn)(1− x−1y−1qn)(1− yqn)(1− y−1qn)

which can be rewritten as

(1− xy)(1− y−1)

(∑
p,`>0

(xp − x−`)yp−`qp` +
xy

1− xy
− y

1− y

)

= (1− x)
∏
n≥1

(1− qn)2(1− xqn)(1− x−1qn)

(1− xyqn)(1− x−1y−1qn)(1− yqn)(1− y−1qn)
(22)

For any x, y with |x| < |y−1|, (22) is an equality of series in C[[q]] converging for
|q| < |x|. Therefore it must be an equality of formal power series in C[x, y, x−1, y−1][[q]].
Since both sides converge for |q|, |xy|, |y| < 1 it follows it must be an equality of
series in C[[q]] for any such x, y; therefore, in that case, it must be that (1− xy)(1−
y−1)

∑
p>0,`≥0

(xp − x−`)yp−`qp` is equal to

(1− x)
∏
n≥1

(1− qn)2(1− xqn)(1− x−1qn)

(1− xyqn)(1− x−1y−1qn)(1− yqn)(1− y−1qn)

and the conclusion follows. �

4.4. A Useful Matrix. In Section (3.2) we used the matrix A(n) = (Anij)i,j≥0 defined
by

Anij =

{[ i+j
2
n

][ j
j−i
2

]
i− j ≡ 0 mod 2

0 i− j ≡ 1 mod 2

i.e., the only nonzero entries are Ank,k+2` =
[
k+`
n

][
k+2`
`

]
, k, ` ≥ 0. In particular,

A0
k,k+2` =

[
k+2`
`

]
. A(0) is upper triangular with ones along the diagonal, and is

therefore invertible:

Proposition 4.6. The inverse of A(0) is the matrix B = (Bij)i,j≥0 given by

Bk,k+2` = (−1)`u(`
2) [k + 2`]

[k + `]

[
k + `

`

]
and Bk,k+2`+1 = 0, for k, ` ≥ 0
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Proof. We need only check that the (k, k + 2`) entry of A(0)B for ` > 0 is 0, since
the diagonal terms are clearly 1 and both matrices are upper triangular. The relevant
entries of B are

Bk+2s,k+2` = (−1)`−su(`−s
2 )
[
k + `+ s

`− s

]
[k + 2`]

[k + `+ s]

Also note that[
k + 2s

s

][
k + `+ s

`− s

]
[k + 2`]

[k + `+ s]
=

(
[k + 2s]!

[s]![k + s]!

)(
[k + s+ `]!

[`− s]![k + 2s]!

)
[k + 2`]

[k + `+ s]

=

(
[`]!

[s]![`− s]!

)(
[k + s+ `− 1]!

[k + s]![`− 1]!

)
[k + 2`]

[`]

=

[
`

s

][
k + `− 1

`− 1

]
[k + 2`]

[`]

Thus

∞∑
s=0

A0
k,k+2sBk+2s,k+2` =

∑̀
s=0

(−1)`−su(`−s
2 )
[
k + 2s

s

][
k + `+ s

`− s

]
[k + 2`]

[k + `+ s]

=

(
[k + 2`]

[`]

)∑̀
s=0

(−1)`−su(`−s
2 )
[
k + s+ `− 1

`− 1

][
`

s

]

=

(
[k + 2`]

[`]

)∑̀
s=0

(−1)`−su(`−s
2 )+

(`−1)(k+s)
2

+
s(`−s)

2

{
k + s+ `− 1

`− 1

}{
`

s

}

= u
`2−`+(`−1)k

2

(
[k + 2`]

[`]

)∑̀
s=0

(−1)`−s
{
k + s+ `− 1

`− 1

}{
`

s

}

= (−1)k+`u
`2−`+(`−1)k

2

(
[k + 2`]

[`]

)∑̀
s=0

{
−`
k + s

}{
`

s

}

By (4) of (4.3),

{
−`
k + s

}
is the coefficient of tk+s in K−`(t, q) and

{
`

s

}
is the coefficient

of t−s in K`(t
−1, q). Therefore, the sum is the coefficient of tk in K−`(t, q)K`(t

−1, q) =
t−`K−`(t, q)K`(t, q) = t−` so it must be 0, unless ` = k = 0, but we assumed ` > 0. �

4.5. A Useful Product. In Section (3.3), an explicit computation of the product
P(n) := A(n)A(0)−1 enabled us to perform the calculation. The product matrix
P(n) = (P n

ij)i,j≥0 is given by
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Lemma 4.7. For k, ` ≥ 0, n > 0,

P n
k,k+2` = u`

2+`(k−n) [k + 2`]

[n+ `]

[
n+ `

n

][
k + `− 1

n− 1

]
and P n

k,k+2`+1 = 0.

Proof. The proof is a calculation very similar to the proof of lemma (4.3). Note that
for ` ≥ s[
k + s

n

][
k + 2s

s

][
k + s+ `

`− s

]
=

=
[k + s] · · · [k + s− n+ 1]

[n]!

[k + 2s] · · · [k + s+ 1]

[s]!

[k + s+ `] · · · [k + 2s+ 1]

[`− s]!

=
[k + s+ `]!

[n]![s]![`− s]![k + s− n]!

=

(
[n+ `]!

[n]![`]!

)(
[`]!

[s]![`− s]!

)(
[k + s+ `− 1]!

[k + s− n]![n+ `− 1]!

)
[k + s+ `]

[n+ `]

so

P n
k,k+2` =

∑̀
s=0

Ank,k+2sBk+2s,k+2`

=
∑̀
s=0

(−1)`−su(`−s
2 )
[
k + s

n

][
k + 2s

s

][
k + s+ `

`− s

]
[k + 2`]

[k + s+ `]

=
[k + 2`]

[n+ `]

[
n+ `

n

]∑̀
s=0

(−1)`−su(`−s
2 )
[
k + s+ `− 1

n+ `− 1

][
`

s

]

=
[k + 2`]

[n+ `]

[
n+ `

n

]∑̀
s=0

(−1)`−su(`−s
2 )+

(n+`−1)(k−n+s)
2

+
s(`−s)

2

{
k + s+ `− 1

n+ `− 1

}{
`

s

}

=
[k + 2`]

[n+ `]

[
n+ `

n

]
u

`2−`+(n+`−1)(k−n)
2

∑̀
s=0

(−1)`−susn/2
{
k + s+ `− 1

n+ `− 1

}{
`

s

}

= (−1)k−n+` [k + 2`]

[n+ `]

[
n+ `

n

]
u

`2−`+(n+`−1)(k−n)
2

∑̀
s=0

usn/2
{
−(n+ `)

k − n+ s

}{
`

s

}
(23)

usn/2
{
−(n+ `)

k − n+ s

}
is the coefficient of tk−n+s in u(n2−kn)/2K−(n+`)(tu

n/2, u) and

{
`

s

}
is the coefficient of t−s in K`(t

−1, u). Therefore, the sum in (23) is the coefficient of
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tk−n in

u(n2−kn)/2K−(n+`)(tu
n/2, u)K`(t

−1, u) = u(n2−kn)/2t−`K−(n+`)(tu
n/2, u)K`(t, u)

= u(n2−kn)/2t−`K−n(tu(n+`)/2, u)

which is

u
`2+`k

2

{
−n

k − n+ `

}
= (−1)k−n+`u

`2+`k
2

{
k + `− 1

n− 1

}
= (−1)k−n+`u

`2+`k−(n−1)(k+`−n)
2

[
k + `− 1

n− 1

]
and we get

P n
k,k+2` = u`

2+`k−n` [k + 2`]

[n+ `]

[
n+ `

n

][
k + `− 1

n− 1

]
�
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