A SHORT PROOF OF A CONJECTURE OF MATSUSHITA

BENJAMIN BAKKER

ABSTRACT. In this note we build on the arguments of van Geemen and Voisin [17] to prove a conjecture of Matsushita that a Lagrangian fibration of an irreducible hyperkähler manifold is either isotrivial or of maximal variation. We also complete a partial result of Voisin [19] regarding the density of torsion points of sections of Lagrangian fibrations.

Let X be an irreducible compact hyperkähler manifold, that is, a simply-connected compact Kähler manifold X for which $H^0(X,\Omega_X^2) = \mathbb{C}\sigma$ for a nowhere-degenerate holomorphic two-form σ . A Lagrangian fibration of X is a proper morphism $f: X \to B$ to a normal compact analytic variety B whose generic fiber is smooth, connected, and Lagrangian (see [10] for a recent survey). It follows that every smooth fiber is an abelian variety. We let $B^{\circ} \subset B$ be a dense Zariski open smooth subset over which the restriction $f^{\circ}: X^{\circ} \to B^{\circ}$ is smooth. By the period map of f we mean the period map $\varphi: B^{\circ} \to S$ to an appropriate moduli space S of polarized abelian varieties associated to the natural variation of (polarized) weight one integral Hodge structures on B° with underlying local system $R^1 f_*^{\circ} \mathbb{Z}_{X^{\circ}}$. We say f is isotrivial if the period map is trivial (equivalently if $R^1f_*^{\circ}\mathbb{Z}_{X^{\circ}}$ has finite monodromy) and of maximal variation if the period map is generically finite.

Our main result is to resolve a conjecture of Matsushita:

Theorem 1. Let X be an irreducible hyperkähler manifold (or more generally a primitive symplectic variety in the sense of [2]). Then any Lagrangian fibration $f: X \to B$ is either isotrivial or of maximal variation.

Both possibilities in Theorem 1 occur, even for K3 surfaces—see for example [9, Chapter 11]. Primitive symplectic varieties are the natural singular analog (as far as deformation theory is concerned) of irreducible hyperkähler manifolds; see below for the definition and the precise meaning of a Lagrangian fibration in this context. Let $T_0 \subset H^2(X,\mathbb{Q})$ be the rational transcendental lattice, namely, the smallest rational Hodge substructure containing $[\sigma] \in H^{2,0}(X)$. Theorem 1 was proven by van Geemen and Voisin [17, Theorem 5] assuming X is smooth and projective, that T_0 has generic (special) Mumford-Tate group (namely $SO(T_0, q_X)$, where q_X is the Beauville-Bogomolov–Fujiki form), and that $\operatorname{rk} T_0 \geq 5$, by showing that under these conditions any fiber of a Lagrangian fibration that is not of maximal variation must be a factor of the Kuga-Satake variety of T_0 . Their result in particular applies to the generic projective deformation of $f: X \to B$, at least for X of a known deformation type.

We will instead prove Theorem 1 by considering the complex variation of Hodge structures on $R^1f^{\circ}_*\mathbb{C}_{X^{\circ}}$. We first recall the basic properties of complex variations. A complex variation of Hodge structures on a Zariski open subset of a compact analytic variety (see for example [5]) consists of a \mathbb{C} -local system V and a holomorphic (resp. antiholomorphic) descending filtration F^{\bullet} (resp. \overline{F}^{\bullet}) such that we have a splitting of the sheaf of C^{∞} sections $A^0(V) = \bigoplus_p A^0(V^p)$ where $V^p = F^p \cap \overline{F}^{-p}$ and the flat connection maps $A^0(V^p)$ to $A^{1,0}(V^{p-1}) \oplus A^1(V^p) \oplus A^{0,1}(V^{p+1})$. We refer to the 2 B. BAKKER

grading V^p as the Hodge grading and we say the level of the variation is the difference $p_{\text{max}} - p_{\text{min}}$ where p_{max} (resp. p_{min}) is the maximum (resp. minimum) Hodge degree p for which $V^p \neq 0$. Observe that the level of a tensor product $V \otimes W$ is the sum of the levels of V and W. A polarization of the variation is a flat hermitian form h for which the splitting is orthogonal and $(-1)^p h$ is positive definite on V^p . In this case $\overline{F}^{-p} = (F^{p+1})^{\perp}$. A variation which admits a polarization is said to be polarizable. We define $\mathbb{C}(-d)$ to be the polarizable complex Hodge structure on $V = \mathbb{C}$ with $V^d = V$.

Recall that the category of polarizable complex variations of Hodge structures is semi-simple. The theorem of the fixed part [16] says that for two polarizable complex variations V, W, the group $\operatorname{Hom}(V, W)$ of morphisms of local systems has a natural complex Hodge structure whose degree zero part is exactly the morphisms of complex variations. We have the following further consequence due to Deligne:

Theorem 2 ([5, 1.13 Proposition]). Suppose V is a \mathbb{C} -local system underlying a polarizable complex variation of Hodge structures and that we have a splitting of \mathbb{C} -local systems

$$(1) V = \bigoplus_{i} M_i \otimes A_i$$

where the M_i are irreducible and pairwise non-isomorphic and the A_i are nonzero complex vector spaces. Then

- (1) Each M_i underlies a polarizable complex variation of Hodge structures, unique up to shifting the Hodge grading.
- (2) Each polarizable complex variation of Hodge structures with underlying local system V arises from (1) by equipping each M_i with its unique polarizable complex variation of Hodge structures and each A_i with a uniquely determined polarizable complex Hodge structure (up to shifting the Hodge grading), namely A_i = Hom(M_i, V).

In particular, the theorem implies a polarizable complex variation is irreducible if and only if the underlying local system is.

Given an \mathbb{R} -local system V, a polarizable real variation of Hodge structures¹ on V in the usual sense naturally induces a polarizable complex variation on $V_{\mathbb{C}}$. Conversely, a polarizable complex variation on $V_{\mathbb{C}}$ comes from a polarizable real variation on V if complex conjugation flips the Hodge grading, or more precisely if for some (hence any) polarization h the isomorphism of local systems $V_{\mathbb{C}} \to V_{\mathbb{C}}^{\vee}$ given by $y \mapsto h(-, \overline{y})$ induces an isomorphism of complex variations $V_{\mathbb{C}} \to V_{\mathbb{C}}^{\vee}(-w)$ for some (uniquely determined) w. Indeed, if this is the case then $V^p \xrightarrow{\cong} (V^{w-p})^{\vee}$ so $\overline{V^p} = V^{w-p}$. Moreover, for even w (resp. odd w) a real polarization is provided by the symmetric (resp. antisymmetric) real form $q(x,y) = h(x,\overline{y}) + h(y,\overline{x})$ (resp. $q(x,y) = i(h(x,\overline{y}) - h(y,\overline{x}))$), since $q(x,\overline{x}) = h(x,x) + h(\overline{x},\overline{x})$ (resp. $-iq(x,\overline{x}) = h(x,x) - h(\overline{x},\overline{x})$) is definite of alternating sign on V^p .

The category of polarizable real variations is also semi-simple. Observe that by Theorem 2 any isotypic component W of a polarizable real variation V is a real subvariation, as the same is true over $\mathbb C$ and the isomorphism $V_{\mathbb C} \to V_{\mathbb C}^{\vee}(-w)$ coming from h restricts to an isomorphism $W_{\mathbb C} \to W_{\mathbb C}^{\vee}(-w)$. If V is a single isotypic factor, then $V_{\mathbb C}$ either has one self-conjugate irreducible factor N or has two non-isomorphic conjugate irreducible factors N, \overline{N} . Note that $N^{\vee} \cong \overline{N}$ via the polarization, and that the level of V is at least as large as the level of any of the irreducible factors of $V_{\mathbb C}$.

¹Throughout, by a real variation we mean a pure real variation, unless otherwise specified.

We say that a real or complex variation is *isotrivial* if the Hodge filtration is flat, or equivalently if the irreducible factors of the complexification are level zero². To summarize the above discussion:

Lemma 3. Let V be an irreducible polarizable real variation of Hodge structures of level one. Then V is either isotrivial, or every irreducible factor of $V_{\mathbb{C}}$ is level one.

Before turning to the proof of Theorem 1 we recall the definition of a primitive symplectic variety. Let X be a symplectic variety in the sense of Beauville³ [3], that is, a compact Kähler variety with rational singularities and a nowhere degenerate 2-form σ on its regular locus X^{reg} . We say that X is primitive symplectic if $H^1(X, \mathcal{O}_X) = 0$ and $H^0(X^{\text{reg}}, \Omega^2_{X^{\text{reg}}}) = \mathbb{C}\sigma$. As the singularities are rational, for any resolution $\pi: Y \to X$ the form σ extends to a two-form on Y [11, Corollary 1.7]. Moreover, $\pi^*: H^2(X, \mathbb{Q}) \to H^2(Y, \mathbb{Q})$ is injective, so the Hodge structure on $H^2(X, \mathbb{Q})$ is pure, and we have an induced isomorphism $\pi^*: H^{2,0}(X) \to H^{2,0}(Y)$ (see [2] for details). In particular we have a well defined class $[\sigma] \in H^{2,0}(X)$.

By a Lagrangian fibration of a primitive symplectic variety we still mean a proper morphism $f: X \to B$ to a normal compact analytic variety B whose generic fiber is smooth, connected, and Lagrangian. Each smooth fiber will still be an abelian variety. Moreover, B is in fact Kähler and Moishezon [18] (and in particular an algebraic space) since f is equidimensional as in [10, Lemma 1.17], now using functorial pullback of reflexive forms [11, Theoreom 1.11] and the fact that $R\pi_*\omega_Y\cong\omega_X\cong\mathcal{O}_X$ by the rationality of the singularities of X [12, §5.1].

We use the same notation as above: $B^{\circ} \subset B$ is a dense Zariski open smooth subset over which the restriction $f^{\circ}: X^{\circ} \to B^{\circ}$ is smooth and $\varphi: B^{\circ} \to S$ is the period map associated to the variation of (polarized) weight one integral Hodge structures on B° with underlying local system $R^1 f_{\circ}^* \mathbb{Z}_{X^{\circ}}$.

Proof of Theorem 1. Let $V_{\mathbb{Z}} := R^1 f_*^{\circ} \mathbb{Z}_{X^{\circ}}$. We start with the following result of Voisin, whose proof we give for convenience (and to extend it slightly).

Lemma 4 ([19, Lemma 5.5]). $V_{\mathbb{R}}$ is irreducible as a polarizable real variation of Hodge structures.

Proof. First assume X is smooth. By a result of Matsushita [13, Lemma 2.2] the restriction map $H^2(X,\mathbb{Q}) \to H^2(X_b,\mathbb{Q})$ to a generic fiber of f° is rank one and by Deligne's global invariant cycles theorem $H^2(X,\mathbb{Q}) \to H^0(B^{\circ}, R^2 f_*^{\circ} \mathbb{Q}_{X^{\circ}})$ is surjective [6]. If $V_{\mathbb{R}}$ splits as a variation then the polarizations of the factors would yield a larger than one-dimensional space of sections of $R^2 f_*^{\circ} \mathbb{R}_{X^{\circ}} = \wedge^2 V_{\mathbb{R}}$, which is a contradiction.

Now if X is a primitive symplectic variety, one easily checks using the results of [2] that Matsushita's proof carries through verbatim and that $H^2(X,\mathbb{Q}) \to H^0(B^\circ, R^2 f_*^\circ \mathbb{Q}_{X^\circ})$ is still surjective, since the cokernel of $\pi^*: H^2(X,\mathbb{Q}) \to H^2(Y,\mathbb{Q})$ is generated by exceptional divisors for a log resolution $\pi: Y \to X$ since X has rational singularities. \square

Suppose now that f is not of maximal variation. Define the real transcendental lattice $T \subset H^2(X,\mathbb{R})$ to be the polarizable real Hodge substructure spanned by $[\sigma]$ and $[\overline{\sigma}]$. We next claim that the polarizable real variation of Hodge structures $V_{\mathbb{R}} \otimes T^{\vee}$ has a nontrivial subvariation of level at most one after a finite base-change; the argument below is that of [17], with some mild modifications.

Let $\nu: B^{\circ\prime} \to B^{\circ}$ be a finite Galois étale cover so that the base-change $V_{\mathbb{Z}}' := \nu^* V_{\mathbb{Z}}$ is pulled back along its period map $\varphi': B^{\circ\prime} \to S'$, where S' is a level cover of S. Note

²Or equivalently, if the monodromy is unitary (by Theorem 2); since there may not be an integral structure, this does not necessarily mean the monodromy is finite.

³This definition is equivalent to Beauville's original one.

4 B. BAKKER

that up to replacing $B^{\circ\prime}$ with a further finite cover, we may assume φ' can be embedded in a proper map $\overline{\varphi}': \overline{B}^{\circ\prime} \to S'$ [8]. Denote by $Z \subset S'$ the image of $\overline{\varphi}'$, by $\psi: B^{\circ\prime} \to Z$ the resulting map, and by $V'''_{\mathbb{Z}}$ the variation on Z so that $V''_{\mathbb{Z}} = \psi^* V'''_{\mathbb{Z}}$. The map $\overline{\varphi}'$ and its image Z are in fact algebraic [4, Theorem 3.1]. We shrink Z (and $B^{\circ}, B^{\circ\prime}, X^{\circ}$) so that it is smooth and so that $R^1\psi_*\mathbb{R}_{B^{\circ\prime}}$ is a local system, naturally underlying a graded polarizable real variation of mixed Hodge structures whose only nonzero Hodge components are (0,0),(1,0),(0,1),(1,1) (for example using Saito's theory of mixed Hodge modules [14, 15]). Let $f^{\circ\prime}: X^{\circ\prime} \to B^{\circ\prime}$ be the base-change of f. The natural map $H^2(X,\mathbb{C}) \to H^0(B^{\circ\prime}, R^2f_*^{\circ\prime}\mathbb{C}_{X^{\circ\prime}})$ sends $[\sigma]$ and hence $T_{\mathbb{C}}$ to zero, since the fibers of f are Lagrangian. By the Leray spectral sequence we have a natural morphism $\operatorname{pt}_Z^* T \to R^1\psi_*V'_{\mathbb{R}} \cong V''_{\mathbb{R}} \otimes R^1\psi_*\mathbb{R}_{B^{\circ\prime}}$ in the category of real variations of mixed Hodge structures. This map is nonzero from the following geometric description as in [17].

Through a very general point $b \in B^{\circ\prime}$, say above a point $z \in Z$, let F be the positive-dimensional fiber of ψ through b. The restricted family X_F is isotrivial, so after replacing F with a finite base-change we can trivialize the monodromy of $V'_{\mathbb{C}}|_F$ and the following natural diagram commutes

$$T \xrightarrow{T} (V_{\mathbb{C}}'' \otimes R^{1} \psi_{*} \mathbb{C}_{B^{\circ \prime}})_{z}$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^{2}(X_{F}, \mathbb{C}) \longrightarrow H^{1}(X_{b}, \mathbb{C}) \otimes H^{1}(F, \mathbb{C})$$

where the bottom arrow comes from the degeneration of the Leray spectral sequence for $X_F \to F$. In the projective case we have $X_F \cong X_b \times F$ (possibly after a further base-change) and this map is just the Künneth projection. The image of $[\sigma]$ is nonzero in the bottom right corner since: (i) σ is nonzero when restricted to X_F since dim $X_F > \frac{1}{2} \dim X$; (ii) $\sigma|_{X_F}$ extends to a smooth compactification since σ extends to a smooth compactification of X° , so $[\sigma] \neq 0 \in H^2(X_F, \mathbb{C})$; (iii) the image of $[\sigma]$ in $H^2(X_b, \mathbb{C}) \otimes H^0(F, \mathbb{C})$ vanishes and $[\sigma]$ is not in the image of $H^0(X_b, \mathbb{C}) \otimes H^2(F, \mathbb{C})$, as it is not pulled back from F.

Thus, there is a nonzero morphism of real variations

(2)
$$V_{\mathbb{R}}' \otimes T^{\vee} \to \operatorname{gr}_{-1}^{W} \psi^{*} (R^{1} \psi_{*} \mathbb{R}_{B^{\circ \prime}})^{\vee}.$$

As the category of polarizable real variations of (pure) Hodge structures is semi-simple, we therefore have a splitting

$$V_{\mathbb{R}}' \otimes T^{\vee} = U \oplus W$$

of real variations, where $U \neq 0$ is the image of (2). In particular, U has level at most one and weight -1.

Now by Lemma 4 the Galois group of ν acts transitively on the isotypic factors of $V'_{\mathbb{R}}$. In particular, if f (and therefore $V_{\mathbb{R}}$) is not isotrivial, no factor of $V'_{\mathbb{R}}$ (as a variation) is isotrivial, or else its entire isotypic component would be, and so would $V_{\mathbb{R}}$. But then there can be no nonzero morphism of variations $V'_{\mathbb{R}} \otimes T^{\vee} \to U$. Indeed, by Lemma 3, an irreducible factor N of $V'_{\mathbb{C}}$ has level one of degrees 0,1, and $N \otimes T^{\vee}_{\mathbb{C}}$ can only map nontrivially to an irreducible factor of $U_{\mathbb{C}}$ of the form N(1), while $\operatorname{Hom}(N \otimes T^{\vee}_{\mathbb{C}}, N(1)) = T_{\mathbb{C}}(1) \cong \mathbb{C}(-1) \oplus \mathbb{C}(1)$ has no degree 0 elements. Thus, f must be isotrivial.

Remark 5. We revisit the example from [17, §4]. Let $p \geq 5$ be a prime and λ a pth root of unity. Consider a family of abelian varieties $f: X \to B$ with a cyclic automorphism such that the induced automorphism α of $V_{\mathbb{R}} = R^1 f_* \mathbb{R}_X$ has λ as an eigenvalue on $V^{1,0}$ but not on $V^{0,1}$. Let α' be the automorphism of T^{\vee} with eigenvalue λ^{-1} on $(T^{\vee})^{-2,0}$ and eigenvalue λ on $(T^{\vee})^{0,-2}$. Then $V_{\mathbb{R}} \otimes T^{\vee}$ has a level one factor, namely

the 1 eigenspace $(V_{\mathbb{R}} \otimes T^{\vee})^1$ of $\alpha \otimes \alpha'$. But the condition on the eigenvalues means the eigenspaces $(V_{\mathbb{C}})^{\lambda}$ and $(V_{\mathbb{C}})^{\lambda^{-1}}$ are level zero, and the real variation $(V_{\mathbb{C}})^{\lambda} \oplus (V_{\mathbb{C}})^{\lambda^{-1}}$ is an isotrivial real factor.

We also obtain the following:

Corollary 6. Let X be a primitive symplectic variety and $f: X \to B$ a Lagrangian fibration. Let L be a line bundle whose restriction to the smooth fibers is topologically trivial. Then the set of points $b \in B^{\circ}(\mathbb{C})$ for which $L|_{X_b}$ is torsion is analytically dense in B.

Corollary 6 was proven by Voisin [19, Theorem 1.3] assuming either f is of maximal variation and dim $X \leq 8$ or isotrivial with no restriction on the dimension. Some applications of Corollary 6 (and more generally Proposition 7 below) to the Chow group and the construction of constant cycle curves are discussed in [19, §1.2].

We deduce this corollary using the following result of Gao. Recall that for a projective family $f: X \to B$ of g-dimensional abelian varieties equipped with a section s and letting $\tilde{B} \to B^{\rm an}$ be the universal cover, the Betti map $\beta: \tilde{B} \to H_1(X_b, \mathbb{R})$ is the real analytic map obtained by taking the coordinates of the section s with respect to the flat real-analytic trivialization of f. Observe that $\beta^{-1}(H_1(X_b, \mathbb{Q}))$ is the set of points of \tilde{B} at which s is torsion.

Proposition 7 ([7, Theorem 9.1]). Let $f: X \to B$ be a projective family of g-dimensional abelian varieties with dim $B \ge g$ and $s: B \to X$ a section. Assume f is of maximal variation, that s is non-torsion, and that the very general fiber of f has no nontrivial \mathbb{Q} -factor. Then the Betti map $\beta: \tilde{B} \to H_1(X_b, \mathbb{R})$ associated to s is generically submersive.

Gao proves Proposition 7 as a simple application of the Ax–Schanuel theorem for universal families of abelian varieties [7, Theorem 1.1]. This generalizes the results of André–Corvaja–Zannier [1] which were used in [19].

Proof of Corollary 6. By Voisin's result and Theorem 1 we may assume f is of maximal variation. Consider the family of abelian varieties $h: \operatorname{Pic}^0(X^\circ/B^\circ) \to B^\circ$ and the section $s: b \mapsto L|_{X_b}$. Let $\nu: B^{\circ\prime} \to B^\circ$ be a Galois finite base-change for which the \mathbb{Q} -factors of the very general fiber of h are defined over $B^{\circ\prime}$. As the Galois group of ν acts transitively on the factors by Lemma 4, the d factors all have the same dimension g', and the image of the period map of each factor must have dimension $\geq g'$, or else the image of the period map of f would have dimension smaller than $dg' = \dim(X^\circ/B^\circ) = \dim(B^\circ)$. The base-change of the section f is also Galois invariant, so it suffices to prove the density statement for its projection to a single factor f is an alytically dense in f as claimed. f

Acknowledgements. The author would like to thank C. Voisin for conversations related to Theorem 1 and Corollary 6, D. Maulik for bringing the paper [19] to his attention, and C. Lehn for conversations related to Lagrangian fibrations in the singular case. This work was partially supported by NSF grant DMS-2131688.

REFERENCES

- [1] Y. André, P. Corvaja, and U. Zannier. The Betti map associated to a section of an abelian scheme. *Invent. Math.*, 222(1):161–202, 2020.
- [2] B. Bakker and C. Lehn. The global moduli theory of symplectic varieties. *Journal für die reine* und angewandte Mathematik (Crelles Journal), 2022.
- [3] A. Beauville. Symplectic singularities. Invent. Math., 139(3):541-549, 2000.

6 B. BAKKER

- [4] A. Borel. Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem. J. Differential Geometry, 6:543–560, 1972.
- [5] P. Deligne. Un théorème de finitude pour la monodromie. In *Discrete groups in geometry and analysis (New Haven, Conn., 1984)*, volume 67 of *Progr. Math.*, pages 1–19. Birkhäuser Boston, Boston, MA, 1987.
- [6] Pierre Deligne. Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math., (40):5-57, 1971.
- [7] Ziyang Gao. Towards the Andre-Oort conjecture for mixed Shimura varieties: The Ax-Lindemann theorem and lower bounds for Galois orbits of special points. J. Reine Angew. Math., 732:85–146, 2017.
- [8] P. A. Griffiths. Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping. *Inst. Hautes Études Sci. Publ. Math.*, (38):125–180, 1970.
- [9] D. Huybrechts. Lectures on K3 surfaces, volume 158 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2016.
- [10] D. Huybrechts and M. Mauri. Lagrangian fibrations. Milan J. Math., 2022.
- [11] S. Kebekus and C. Schnell. Extending holomorphic forms from the regular locus of a complex space to a resolution of singularities. J. Amer. Math. Soc., 34(2):315–368, 2021.
- [12] J. Kollár and S. Mori. Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998.
- [13] D. Matsushita. On deformations of Lagrangian fibrations. In K3 surfaces and their moduli, volume 315 of Progr. Math., pages 237–243. Birkhäuser/Springer, [Cham], 2016.
- [14] M. Saito. Modules de Hodge polarisables. Publ. Res. Inst. Math. Sci., 24(6):849–995 (1989), 1988.
- [15] M. Saito. Mixed Hodge modules. Publ. Res. Inst. Math. Sci., 26(2):221–333, 1990.
- [16] W. Schmid. Variation of Hodge structure: the singularities of the period mapping. *Invent. Math.*, 22:211–319, 1973.
- [17] B. van Geemen and C. Voisin. On a conjecture of Matsushita. Int. Math. Res. Not. IMRN, (10):3111–3123, 2016.
- [18] J. Varouchas. Sur l'image d'une variété kählérienne compacte. In Fonctions de plusieurs variables complexes, V (Paris, 1979–1985), volume 1188 of Lecture Notes in Math., pages 245–259. Springer, Berlin, 1986.
- [19] C. Voisin. Torsion points of sections of Lagrangian torus fibrations and the Chow ring of hyper-Kähler manifolds. In *Geometry of moduli*, volume 14 of *Abel Symp.*, pages 295–326. Springer, Cham, 2018.
- B. Bakker: Dept. of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, USA.

Email address: bakker.uic@gmail.com