A SHORT PROOF OF A CONJECTURE OF MATSUSHITA

BENJAMIN BAKKER

ABSTRACT. In this note we build on the arguments of van Geemen and Voisin [17]
to prove a conjecture of Matsushita that a Lagrangian fibration of an irreducible
hyperkéhler manifold is either isotrivial or of maximal variation. We also complete
a partial result of Voisin [I9] regarding the density of torsion points of sections of
Lagrangian fibrations.

Let X be an irreducible compact hyperkahler manifold, that is, a simply-connected
compact Kihler manifold X for which H(X,0%) = Co for a nowhere-degenerate
holomorphic two-form o. A Lagrangian fibration of X is a proper morphism f : X — B
to a normal compact analytic variety B whose generic fiber is smooth, connected, and
Lagrangian (see [I0] for a recent survey). It follows that every smooth fiber is an
abelian variety. We let B® C B be a dense Zariski open smooth subset over which the
restriction f°: X° — B¢ is smooth. By the period map of f we mean the period map
@ : B° — S to an appropriate moduli space S of polarized abelian varieties associated
to the natural variation of (polarized) weight one integral Hodge structures on B°
with underlying local system R!f°Zxo. We say f is isotrivial if the period map is
trivial (equivalently if R!f°Zyxo has finite monodromy) and of mazimal variation if
the period map is generically finite.

Our main result is to resolve a conjecture of Matsushita:

Theorem 1. Let X be an irreducible hyperkdhler manifold (or more generally a prim-
itive symplectic variety in the sense of [2]). Then any Lagrangian fibration f : X — B
is either isotrivial or of maximal variation.

Both possibilities in Theorem 1| occur, even for K3 surfaces—see for example [0,
Chapter 11]. Primitive symplectic varieties are the natural singular analog (as far
as deformation theory is concerned) of irreducible hyperkéhler manifolds; see below
for the definition and the precise meaning of a Lagrangian fibration in this context.
Let Ty C H?*(X,Q) be the rational transcendental lattice, namely, the smallest ra-
tional Hodge substructure containing [0] € H?%(X). Theorem [I| was proven by van
Geemen and Voisin [I7, Theorem 5] assuming X is smooth and projective, that Ty has
generic (special) Mumford-Tate group (namely SO(7y, ¢x ), where ¢x is the Beauville—
Bogomolov-Fujiki form), and that rk 7y > 5, by showing that under these conditions
any fiber of a Lagrangian fibration that is not of maximal variation must be a factor
of the Kuga—Satake variety of Tp. Their result in particular applies to the generic
projective deformation of f : X — B, at least for X of a known deformation type.

We will instead prove Theorem [I| by considering the complex variation of Hodge
structures on R!f°Cxo. We first recall the basic properties of complex variations. A
complex variation of Hodge structures on a Zariski open subset of a compact analytic
variety (see for example [5]) consists of a C-local system V' and a holomorphic (resp.
antiholomorphic) descending filtration F* (resp. F') such that we have a splitting
of the sheaf of C* sections A°(V) = D, A%(VP) where VP = FP N F ” and the

flat connection maps A°(VP) to AYO(VP~1) @ AY(VP) @ A% (VPHL). We refer to the
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grading V? as the Hodge grading and we say the level of the variation is the difference
Pmax — Pmin Where pmax (resp. Pmin) is the maximum (resp. minimum) Hodge degree
p for which VP £ 0. Observe that the level of a tensor product V' @ W is the sum of
the levels of V and W. A polarization of the variation is a flat hermitian form h for
which the splitting is orthogonal and (—1)Ph is positive definite on VP. In this case

F 7 = (FrthyL. A variation which admits a polarization is said to be polarizable. We
define C(—d) to be the polarizable complex Hodge structure on V = C with V¢ =V,

Recall that the category of polarizable complex variations of Hodge structures is
semi-simple. The theorem of the fixed part [16] says that for two polarizable complex
variations V, W, the group Hom(V, W) of morphisms of local systems has a natural
complex Hodge structure whose degree zero part is exactly the morphisms of complex
variations. We have the following further consequence due to Deligne:

Theorem 2 ([5, 1.13 Proposition]). Suppose V is a C-local system underlying a po-
larizable complex variation of Hodge structures and that we have a splitting of C-local
systems

where the M; are irreducible and pairwise non-isomorphic and the A; are monzero
complex vector spaces. Then

(1) Each M; underlies a polarizable complex variation of Hodge structures, unique
up to shifting the Hodge grading.

(2) Each polarizable complex variation of Hodge structures with underlying local
system V arises from by equipping each M; with its unique polarizable
complez variation of Hodge structures and each A; with a uniquely determined
polarizable complex Hodge structure (up to shifting the Hodge grading), namely

In particular, the theorem implies a polarizable complex variation is irreducible if
and only if the underlying local system is.

Given an R-local system V', a polarizable real variation of Hodge structuresﬂ onV in
the usual sense naturally induces a polarizable complex variation on V. Conversely,
a polarizable complex variation on V¢ comes from a polarizable real variation on V if
complex conjugation flips the Hodge grading, or more precisely if for some (hence any)
polarization h the isomorphism of local systems Vg — V¥ given by y — h(—,7) induces
an isomorphism of complex variations Vg — V¢ (—w) for some (uniquely determined)

w. Indeed, if this is the case then V7 =N (VW=P)V s0 VP = V¥~P, Moreover, for even w
(resp. odd w) a real polarization is provided by the symmetric (resp. antisymmetric)
real form q(z,y) = h(z,y)+h(y, T) (resp. q(z,y) = i(h(z,y) —h(y,T))), since q(z,T) =
h(z,x) + h(z,Z) (resp. —iq(x,ZT) = h(xz,x) — h(T,T)) is definite of alternating sign on
VP.

The category of polarizable real variations is also semi-simple. Observe that by
Theorem [2] any isotypic component W of a polarizable real variation V is a real sub-
variation, as the same is true over C and the isomorphism Vg — V¥ (—w) coming from
h restricts to an isomorphism W — W (—w). If V is a single isotypic factor, then V¢
either has one self-conjugate irreducible factor N or has two non-isomorphic conjugate
irreducible factors N, N. Note that NV = N via the polarization, and that the level
of V is at least as large as the level of any of the irreducible factors of V.

1Throughout, by a real variation we mean a pure real variation, unless otherwise specified.
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We say that a real or complex variation is isotrivial if the Hodge filtration is flat,
or equivalently if the irreducible factors of the complexification are level zer(ﬂ To
summarize the above discussion:

Lemma 3. Let V be an irreducible polarizable real variation of Hodge structures of
level one. Then V is either isotrivial, or every irreducible factor of Vi is level one.

Before turning to the proof of Theorem [I| we recall the definition of a primitive
symplectic variety. Let X be a symplectic variety in the sense of Beauvilleﬂ [3], that is,
a compact Kéahler variety with rational singularities and a nowhere degenerate 2-form
o on its regular locus X*™®8. We say that X is primitive symplectic if H'(X,Ox) =
0 and HO(Xreg,Q_zxreg) = Co. As the singularities are rational, for any resolution
7w :Y — X the form o extends to a two-form on Y [11, Corollary 1.7]. Moreover,
7 H*(X,Q) — H?(Y,Q) is injective, so the Hodge structure on H?(X,Q) is pure,
and we have an induced isomorphism 7* : H*?(X) — H?%(Y) (see [2] for details). In
particular we have a well defined class [0] € H*%(X).

By a Lagrangian fibration of a primitive symplectic variety we still mean a proper
morphism f : X — B to a normal compact analytic variety B whose generic fiber is
smooth, connected, and Lagrangian. Each smooth fiber will still be an abelian variety.
Moreover, B is in fact Kédhler and Moishezon [I8] (and in particular an algebraic space)
since f is equidimensional as in [I0, Lemma 1.17], now using functorial pullback of
reflexive forms [I1, Theoreom 1.11] and the fact that Rmwy = wx = Ox by the
rationality of the singularities of X [12], §5.1].

We use the same notation as above: B° C B is a dense Zariski open smooth subset
over which the restriction f°: X° — B° is smooth and ¢ : B® — S is the period map
associated to the variation of (polarized) weight one integral Hodge structures on B°
with underlying local system R!f°Zxo.

Proof of Theorem [ Let Vz := R f2Zxo. We start with the following result of Voisin,
whose proof we give for convenience (and to extend it slightly).

Lemma 4 ([19, Lemma 5.5]). Vg is irreducible as a polarizable real variation of Hodge
structures.

Proof. First assume X is smooth. By a result of Matsushita [I3] Lemma 2.2] the
restriction map H?(X,Q) — H?(X3,Q) to a generic fiber of f° is rank one and by
Deligne’s global invariant cycles theorem H?(X,Q) — H°(B°, R?f°Qx-) is surjective
[6]. If Vg splits as a variation then the polarizations of the factors would yield a larger
than one-dimensional space of sections of R? f°Rxo = A?Vg, which is a contradiction.
Now if X is a primitive symplectic variety, one easily checks using the results of [2]
that Matsushita’s proof carries through verbatim and that H?(X, Q) — H°(B°, R?f°Qx-)
is still surjective, since the cokernel of 7* : H2(X,Q) — H?(Y,Q) is generated by ex-
ceptional divisors for a log resolution 7 : ¥ — X since X has rational singularities. [

Suppose now that f is not of maximal variation. Define the real transcendental
lattice T C H?(X,R) to be the polarizable real Hodge substructure spanned by [¢] and
[7]. We next claim that the polarizable real variation of Hodge structures Vg ® T has
a nontrivial subvariation of level at most one after a finite base-change; the argument
below is that of [I7], with some mild modifications.

Let v : B — B° be a finite Galois étale cover so that the base-change V; := v*V7,
is pulled back along its period map ¢’ : B — S’, where S’ is a level cover of S. Note

20r equivalently, if the monodromy is unitary (by Theorem ; since there may not be an integral
structure, this does not necessarily mean the monodromy is finite.
3This definition is equivalent to Beauville’s original one.
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that up to replacing B with a further finite cover, we may assume ¢’ can be embedded
in a proper map @ : B~ — S’ [8]. Denote by Z C S’ the image of @, by ¢ : B — Z
the resulting map, and by V;/ the variation on Z so that V] = ¢*V/. The map @
and its image Z are in fact algebraic [4, Theorem 3.1]. We shrink Z (and B°, B, X°)
so that it is smooth and so that R!'%,Rpo is a local system, naturally underlying
a graded polarizable real variation of mixed Hodge structures whose only nonzero
Hodge components are (0,0), (1,0),(0,1),(1,1) (for example using Saito’s theory of
mixed Hodge modules [14, [15]). Let f* : X° — B® be the base-change of f. The
natural map H?(X,C) — H°(B®, R?2f*'C ) sends [o] and hence Tt to zero, since the
fibers of f are Lagrangian. By the Leray spectral sequence we have a natural morphism
pty T — R,V = Vi @ R4, Rpe in the category of real variations of mixed Hodge
structures. This map is nonzero from the following geometric description as in [17].

Through a very general point b € B, say above a point z € Z, let F be the
positive-dimensional fiber of v through b. The restricted family Xp is isotrivial, so
after replacing F' with a finite base-change we can trivialize the monodromy of V{|p
and the following natural diagram commutes

T— (V) ® R'4,Cpo),

| |

H?(Xp,C) —— H'(X;,C) ® HY(F,C)

where the bottom arrow comes from the degeneration of the Leray spectral sequence
for Xp — F. In the projective case we have Xp = X;, x F' (possibly after a further
base-change) and this map is just the Kiinneth projection. The image of [o] is nonzero
in the bottom right corner since: (i) o is nonzero when restricted to X p since dim Xp >
%dim X; (ii) o|x, extends to a smooth compactification since o extends to a smooth
compactification of X°, so [0] # 0 € H?(Xp,C); (iii) the image of [0] in H?(X,,C) ®
H°(F,C) vanishes and [o] is not in the image of H°(X},C) ® H?(F,C), as it is not
pulled back from F'.
Thus, there is a nonzero morphism of real variations

(2) Vo TV — g™ v* (R Rper)V.

As the category of polarizable real variations of (pure) Hodge structures is semi-simple,
we therefore have a splitting

Vea@TV =UeW
of real variations, where U # 0 is the image of . In particular, U has level at most
one and weight -1.

Now by Lemma [4| the Galois group of v acts transitively on the isotypic factors
of V. In particular, if f (and therefore Vi) is not isotrivial, no factor of V§ (as a
variation) is isotrivial, or else its entire isotypic component would be, and so would
V. But then there can be no nonzero morphism of variations V§{ ® TV — U. Indeed,
by Lemma [3] an irreducible factor N of V{ has level one of degrees 0,1, and N @ T
can only map nontrivially to an irreducible factor of Uc of the form N(1), while
Hom(N ®@ T, N(1)) = Tc(1) = C(—1) & C(1) has no degree 0 elements. Thus, f must
be isotrivial. O

Remark 5. We revisit the example from [17) §4]. Let p > 5 be a prime and A a pth root
of unity. Consider a family of abelian varieties f : X — B with a cyclic automorphism
such that the induced automorphism o of Vg = R!'f,Rx has A as an eigenvalue on
V10 but not on VO, Let o be the automorphism of TV with eigenvalue A~! on
(TV)~29 and eigenvalue A on (TV)%~2. Then Vg ® TV has a level one factor, namely
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the 1 eigenspace (Ve @ TV)! of a ® /. But the condition on the eigenvalues means the
cigenspaces (Ve)* and (Vo) are level zero, and the real variation (Ve)* & (Vo) i
an isotrivial real factor.

S

We also obtain the following;:

Corollary 6. Let X be a primitive symplectic variety and f : X — B a Lagrangian
fibration. Let L be a line bundle whose restriction to the smooth fibers is topologically
trivial. Then the set of points b € B°(C) for which L|x, is torsion is analytically dense
in B.

Corollary |§| was proven by Voisin [19, Theorem 1.3] assuming either f is of maximal
variation and dim X < 8 or isotrivial with no restriction on the dimension. Some
applications of Corollary |§| (and more generally Proposition (7| below) to the Chow
group and the construction of constant cycle curves are discussed in [19, §1.2].

We deduce this corollary using the following result of Gao. Recall that for a pro-
jective family f : X — B of g-dimensional abelian varieties equipped with a section
s and letting B — B be the universal cover, the Betti map 8 : B — H, (X, R) is
the real analytic map obtained by taking the coordinates of the section s with respect
to the flat real-analytic trivialization of f. Observe that S~1(H; (X}, Q)) is the set of
points of B at which s is torsion.

Proposition 7 ([7, Theorem 9.1]). Let f : X — B be a projective family of g-
dimensional abelian varieties with dim B > g and s : B — X a section. Assume
f is of maximal variation, that s is non-torsion, and that the very general fiber of f
has no nontrivial Q-factor. Then the Betti map 8 : B — H; (Xp, R) associated to s is
generically submersive.

Gao proves Proposition [7| as a simple application of the Ax—Schanuel theorem for
universal families of abelian varieties [7, Theorem 1.1]. This generalizes the results of
André-Corvaja—Zannier [I] which were used in [19].

Proof of Corollary[6 By Voisin’s result and Theorem [I]we may assume f is of maximal
variation. Consider the family of abelian varieties h : Pic’(X°/B°) — B° and the
section s : b — L|x,. Let v : B% — B° be a Galois finite base-change for which the Q-
factors of the very general fiber of h are defined over B®. As the Galois group of v acts
transitively on the factors by Lemma {4, the d factors all have the same dimension ¢,
and the image of the period map of each factor must have dimension > ¢/, or else the
image of the period map of f would have dimension smaller than dg’ = dim(X°/B°) =
dim(B°). The base-change of the section s is also Galois invariant, so it suffices to
prove the density statement for its projection to a single factor Y° — B®. Applying
Proposition |7, the Betti map § : B — H;(Y},R) is submersive, so f~(Hy (Y, Q)) is
analytically dense in B as claimed. O
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